Skip to main content

Advertisement

Log in

Evaluation of biomass component effect on kinetic values for biomass pyrolysis using simplex lattice design

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We evaluated the correlation between the biomass constituents and their kinetic values. To simplify the models and indicate the effect of each constituent, pure biomass components and their mixtures were used as biomass model. The experiments were set up based on simplex-lattice design. The pyrolysis of synthesized biomass was performed by non-isothermal thermogravimetric analyzer. Several kinetic models in the literature, including Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and analytical method were used to determine kinetic values for each experiment. The generated regression models and predicted kinetic values from those methods were compared. The results obtained from analytical model (for n≠1) showed a good agreement (R2>0.95) with those obtained from experiments. This study also provide contour plots for all cases in order to observe the behavior of biomass pyrolysis at different component ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Choobuathong, Effects of chemical composition of biomass on pyrolysis and combustion, Department of Chemical Technology, Chulalongkorn University, Bangkok (2007).

    Google Scholar 

  2. J. Jones, Chem. Eng., 85, 87 (1978).

    CAS  Google Scholar 

  3. T. Damartzis, D. Vamvuka, S. Sfakiotakis and A. Zabaniotou, Bioresour. Technol., 102, 6230 (2011).

    Article  CAS  Google Scholar 

  4. J.M. Encinar, J. F. Gonzalez and J. Gonzalez, Fuel Process. Technol., 68, 209 (2000).

    Article  CAS  Google Scholar 

  5. E. Mura, O. Debono, A. Villot and F. Paviet, Biomass Bioenergy, 59, 187 (2013).

    Article  CAS  Google Scholar 

  6. Y. F. Huang, P.T. Chiueh, W. H. Kuan and S. L. Lo, Appl. Energy, 110, 1 (2013).

    Article  Google Scholar 

  7. Y. F. Huang, W. H. Kuan, P.T. Chiueh and S. L. Lo, Bioresour. Technol., 102, 9241 (2011).

    Article  CAS  Google Scholar 

  8. S. Hu, A. Jess and M. Xu, Fuel, 86, 2778 (2007).

    Article  CAS  Google Scholar 

  9. A. Meng, H. Zhou, L. Qin, Y. Zhang and Q. Li, J. Anal. Appl. Pyrol., 104, 28 (2013).

    Article  CAS  Google Scholar 

  10. S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen and J. Wu, Biosystems Eng., 116, 420 (2013).

    Article  Google Scholar 

  11. S. Singh, C. Wu and P. T. Williams, J. Anal. Appl. Pyrol., 94, 99 (2012).

    Article  CAS  Google Scholar 

  12. J. Chattopadhyay, C. Kim, R. Kim and D. Pak, Korean J. Chem. Eng., 25, 1047 (2008).

    Article  CAS  Google Scholar 

  13. S. Unz, T. Wen and M. Beckmann, Characterization of biomass used in thermal processes with regard to the kinetic properties, 35th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA (2010).

    Google Scholar 

  14. C. Chen, X. Ma and Y. He, Bioresour. Technol., 117, 264 (2012).

    Article  CAS  Google Scholar 

  15. S. Ceylan and Y. Topçu, Bioresour. Technol., 156, 182 (2014).

    Article  CAS  Google Scholar 

  16. A. Khawam, Application of solid-state kinetics to desolvation reactions, Pharmacy, Graduate College of The University of Iowa, Iowa, USA (2007).

    Google Scholar 

  17. A. Garcia-Maraver, D. Salvachua, M. J. Martinez, L. F. Diaz and M. Zamorano, Waste Manage., 33, 2245 (2013).

    Article  CAS  Google Scholar 

  18. A. Gani and I. Naruse, Renew. Energy, 32, 649 (2007).

    Article  CAS  Google Scholar 

  19. C. Couhert, J.-M. Commandre and S. Salvador, Fuel, 88, 408 (2009).

    Article  CAS  Google Scholar 

  20. B. Peters, Fuel Process. Technol., 92, 1993 (2011).

    Article  CAS  Google Scholar 

  21. L. Burhenne, J. Messmer, T. Aicher and M.-P. Laborie, J. Anal. Appl. Pyrol., 101, 177 (2013).

    Article  CAS  Google Scholar 

  22. P. V. Rao and S. S. Baral, Chem. Eng. J., 172, 977 (2011).

    Article  CAS  Google Scholar 

  23. Q. Liu, Z. Zhong, S. Wang and Z. Luo, J. Anal. Appl. Pyrol., 90, 213 (2011).

    Article  CAS  Google Scholar 

  24. TAPPI PRESS, Atlanta, USA. TAPPI Standard T-222 om-98, “Acid-insoluble lignin in wood and pulp, TAPPI Test Methods”, TAPPI PRESS, Atlanta, USA (1998).

    Google Scholar 

  25. B. L. Browning, Methods of wood chemistry, Wiley Inter-Science Publishers, New York (1967).

    Google Scholar 

  26. TAPPI Official Test Method T 203 om-88, “Alpha-, Beta-, and Gamma-Cellulose in Pulp”, the TAPPI Press, Atlanta, Georgia, revised 1988, correction 1992, pp. 1-3 (1988).

    Google Scholar 

  27. J.E. White, W. J. Catallo and B.L. Legendre, J. Anal. Appl. Pyrol., 91, 1 (2011).

    Article  CAS  Google Scholar 

  28. H. E. Kissinger, Anal. Chem., 29, 1702 (1957).

    Article  CAS  Google Scholar 

  29. T. Akahira and T. Sunose, Research Report of Chiba Institute of Technology, 16, 22 (1971).

    Google Scholar 

  30. T. Ozawa, J. Therm. Anal., 2, 301 (1970).

    Article  CAS  Google Scholar 

  31. J. H. Flynn, Thermochim. Acta, 300, 83 (1997).

    Article  CAS  Google Scholar 

  32. C.D. Doyle, Nature, 207, 290 (1965).

    Article  CAS  Google Scholar 

  33. C.-P. Lin, Y.-M. Chang, J. P. Gupta and C.-M. Shu, Process. Safe. Environ., 88, 413 (2010).

    Article  CAS  Google Scholar 

  34. S. Karaman, M.T. Yilmaz and A. Kayacier, Food Hydrocolloid., 25, 1319 (2011).

    Article  CAS  Google Scholar 

  35. K. Hashimoto, I. Hasegawa, J. Hayashi and K. Mae, Fuel, 90, 104 (2011).

    Article  CAS  Google Scholar 

  36. H. Zhou, Y. Long, A. Meng, Q. Li and Y. Zhang, Thermochim. Acta, 566, 36 (2013).

    Article  CAS  Google Scholar 

  37. H. Haykiri-Acma, S. Yaman and S. Kucukbayrak, Fuel Process. Technol., 91, 759 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjapon Chalermsinsuwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chayaporn, S., Sungsuk, P., Sunphorka, S. et al. Evaluation of biomass component effect on kinetic values for biomass pyrolysis using simplex lattice design. Korean J. Chem. Eng. 32, 1081–1093 (2015). https://doi.org/10.1007/s11814-014-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0296-8

Keywords

Navigation