Skip to main content
Log in

Microstructure and corrosion behavior of electrodeposited nanocrystalline nickel prepared from acetate bath

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present investigation deals with the electrodeposition of nanocrystalline nickel onto mild steel metallic foil from electrolytes containing nickel acetate as the major metal salt. Two different chlorides, potassium chloride and nickel chloride, were tried for two different baths. Potassium citrate was used as buffer for alternate to boric acid. The additives tried were sodium lauryl sulfate as wetting agent, saccharin as primary brightener and 2-butyne 1,4-diol as secondary brightener. These additives are found to improve the hardness, grain size, surface morphology of the electrodeposited nickel films and throwing power of the nickel acetate electrolytes. The nickel films prepared from nickel chloride containing electrolytes showed higher corrosion resistance as compared to potassium chloride containing electrolytes, because the nickel films produced from the nickel chloride electrolytes are compact and possess fine grained structure. The XRD pattern obtained for electrodeposited nickel shows polycrystalline face centered cubic structure. The crystal size was calculated using Scherrer formula. A uniform and pore free surface was observed under SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Lowenheim, Modern electroplating, New York, McGraw-Hill (1978).

    Google Scholar 

  2. F. Ebrahimi, D. Kong, T. E. Matthews and Q. Zhai, Processing and Fabrication of Advanced Materials VII Ed., Warrendale, PA, TMS Publication, 509 (1988).

    Google Scholar 

  3. S. Trasatti, Electrochim. Acta, 37, 2137 (1992).

    Article  CAS  Google Scholar 

  4. T. C. Franklin. Plat. Surf. Finish, 81, 62 (1994).

    CAS  Google Scholar 

  5. L. Oniciu and L. Muresan, J. Appl. Electrochem., 21, 565 (1991).

    Article  CAS  Google Scholar 

  6. W. Plieth, Electrochim. Acta, 37, 2115 (1992).

    Article  CAS  Google Scholar 

  7. R. Sekar, C. Eagammai and S. Jayakishnan, J. Appl. Electchem., 40, 49 (2010).

    Article  CAS  Google Scholar 

  8. H.D. Merchant, Defect structure, morphology and properties of deposits, Warrendale, PA, TMS Publication 1 (1995).

    Google Scholar 

  9. J.K. Dennis and T.E Such, Nickel and Chromium plating, London, Newnes-Butterworths, 163 (1972).

    Google Scholar 

  10. Notification of the Director General of the Environment Agency in Japan, 2, 22 (1999).

  11. T. Doi, K. Mizumoto, S. Tanaka and T. Yamashita, Met. Finish, 102, 26 (2004).

    Article  CAS  Google Scholar 

  12. R. Sekar and S. Jayakrishnan, Plat. Surf. Finish, 92, 58 (2005).

    CAS  Google Scholar 

  13. R. Sekar, C. Kala and RM. Krishnan, Trans. Inst. Met. Finish, 80, 173 (2002).

    CAS  Google Scholar 

  14. R. Sekar, RM. Krishnan and V. S. Muralidharan, Trans. Inst. Met. Finish, 82, 164 (2004).

    CAS  Google Scholar 

  15. H. Silman, G. Isserlis and A. F. Averill, Protective and decorative coatings for metals, Teddington England, Finishing Publications Ltd. (1978).

    Google Scholar 

  16. R. Sekar and S. Jayakishnan, J. Appl. Electrochem., 36, 591 (2006).

    Article  CAS  Google Scholar 

  17. B. E. Conway and JO’M Bockris, Plating, 46, 371 (1959).

    CAS  Google Scholar 

  18. ASTM-G102-89 Standard Practice for calculation of Corrosion Rates and related information from Electrochemical Measurements, 03.02 435 (2001).

  19. M. Stern and A. L. Geary, J. Electrochem. Soc., 104, 56 (1957).

    Article  CAS  Google Scholar 

  20. B.D. Cullity, Elements of X-ray diffraction, USA, Addison Wesley (1967).

    Google Scholar 

  21. H. P. Klug and L. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, New York, Wiley (1980).

    Google Scholar 

  22. G. Gyawali, K. Hamal, B. Joshi, A. Rajbhandari and S.W. Lee, Mater. Lett., 126, 228 (2014).

    Article  CAS  Google Scholar 

  23. F. Mansfield, W. Kendig and S. Tasi, Corrosion, 38, 570 (1982).

    Article  Google Scholar 

  24. S. Survilline, A. Cesuniene and R. Juskena, Trans. Inst. Met. Finish, 82, 185 (2004).

    Google Scholar 

  25. S. Survilline, V. Jasualaitiene and A. Cesuniene, Trans. Inst. Met. Finish, 83, 130 (2005).

    Article  Google Scholar 

  26. M. Holm and T. J.O’ Keefe, J. Appl. Chem., 83, 1125 (2000).

    Google Scholar 

  27. L.P. Gai, R. Mitra and J.R. Weertman, Pure. Appl. Chem., 74, 1519 (2002).

    Article  CAS  Google Scholar 

  28. J. Amblard, I. Epelboin, M. Froment and G. Maurin, J. Appl. Electrochem., 9, 223 (1979).

    Article  Google Scholar 

  29. A. G. Mc Cormack, M. J. Pomeroy and V. J. Cunnane, J. Electrochem. Soc., 150, 356 (2003).

    Article  Google Scholar 

  30. A. Ibanez and E. Fatas, Surf. Coat. Technol., 191, 7 (2005).

    Article  CAS  Google Scholar 

  31. E. Budevski, G. Staikov and W. J. Lorenz, Electrochim. Acta, 45, 2259 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Sekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, R., Jagadesh, K.K. & Bapu, G.N.K.R. Microstructure and corrosion behavior of electrodeposited nanocrystalline nickel prepared from acetate bath. Korean J. Chem. Eng. 32, 1194–1200 (2015). https://doi.org/10.1007/s11814-014-0289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0289-7

Keywords

Navigation