Skip to main content

Acoustically aided coalescence of water droplets and dehydration of crude oil emulsion

Abstract

We studied the use of acoustics for coalescence of water droplets and dehydration of crude oil emulsion. Experimental studies were conducted using acoustic standing waves in a resonant cavity to trap water droplets and enhance oil separation. The focus was on the effect of ultrasound irradiation on crude oil emulsion properties, such as viscosity, water drop radius, shear strength of oil-water interfacial films, and flocculation size of asphaltene. These properties are important to the coalescence of water drops in water-oil (W/O) emulsion in the process of oil separation with ultrasound. Ultrasound irradiation is able to decrease the emulsion stability, which provides a new insight into the acoustics-aided demulsification mechanism. It can be considered as a supplement of traditional acoustics-aided demulsification mechanism (ultrasound-induced motion of water droplets). Furthermore, the effects of ultrasonic parameters such as the type of ultrasonic field, irradiation time, frequency, and acoustic intensity on dewatering the W/O emulsion are discussed. These results provide guidance for setting the optimum conditions for the separation of W/O emulsion with ultrasound. Under the optimum conditions, water content in crude oil emulsion can be decreased from 40% to 3.8%, which satisfies the requirement of dehydration for refinery.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. S. Eow and M. Ghadiri, Chem. Eng. J., 85, 357 (2002).

    Article  CAS  Google Scholar 

  2. 2.

    G. R. Check, Chem. Eng. Process.: Process Intensification, 81, 72 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    G. Zhang, P. Zhang and Y. Chen, Tsinghua Science Technology, 11, 374 (2006).

    Article  Google Scholar 

  4. 4.

    L. J. Stack, P.A. Carney and H. B. Malone, Ultrason. Sonochem., 12, 153 (2005).

    Article  CAS  Google Scholar 

  5. 5.

    G. D. Pangu and D. L. Feke, Chem. Eng. Sci., 59, 3183 (2004).

    Article  CAS  Google Scholar 

  6. 6.

    L. A. Crum, J. Acoust. Soc. Am., 50, 157 (1972).

    Article  Google Scholar 

  7. 7.

    J. Jiao, Y. He and T. Leong, J. Phys. Chem. B, 117, 12549 (2013).

    Article  CAS  Google Scholar 

  8. 8.

    C. Browne, R. F. Tabor and D.Y. C. Chan, J. Surf. Colloids, 27, 12025 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    J. Zhang, J. Li, R.W. Thring, X. Hu and X. Song, J. Hazard. Mater., 203–204, 195 (2012).

    Article  Google Scholar 

  10. 10.

    Y. Jin, X. Zheng and X. Chu, Ind. Eng. Chem. Res., 51, 9213 (2012).

    Article  CAS  Google Scholar 

  11. 11.

    G. R. Check and D. Mowla, Ultrason. Sonochem., 20, 378 (2013).

    Article  CAS  Google Scholar 

  12. 12.

    S. Nii, S. Kikumoto and H. Tokuyama, Ultrason. Sonochem., 16, 145 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    S. E. Talor, Chem. Ind., 19, 770 (1992).

    Google Scholar 

  14. 14.

    D. Sunartio, M. Ashokkumar and F. Grieser, J. Am. Chem. Soc., 129, 6031 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    R. A. Mohammed, A. I. Bailey, P. F. Luckham and S. E. Taylor, Colloids Surf. A: Physicochemical and Engineering Aspects, 80, 237 (1993).

    Article  CAS  Google Scholar 

  16. 16.

    J.D. McLean and P.K. Kilpatrick, J. Colloid Interface Sci., 189, 242 (1997).

    Article  CAS  Google Scholar 

  17. 17.

    R. Aveyard, B. P. Binks, P.D. I. Fletcher and J. R. Lu, J. Colloid Interface Sci., 139, 128 (1990).

    Article  CAS  Google Scholar 

  18. 18.

    E. E. Isaacs, H. Huang, A. J. Babchin and R. S. Chow, Colloids Surf., 46, 177 (1990).

    Article  CAS  Google Scholar 

  19. 19.

    D.D. Eley, M. J. Hey and J.D. Symonds, Colloids Surf., 32, 87 (1988).

    Article  CAS  Google Scholar 

  20. 20.

    K. Yosioka and G. Kawasima, Acustica, 5, 167 (1955).

    Google Scholar 

  21. 21.

    M. A. H. Weiser and R. E. Apfel, Acustica, 56, 114 (1984).

    Google Scholar 

  22. 22.

    X. Zheng and R. E. Apfel, J. Acoust. Soc. Am., 97, 2218 (1995).

    Article  Google Scholar 

  23. 23.

    L. A. Crum, J. Acoust. Soc. Am., 57, 1363 (1975).

    Article  Google Scholar 

  24. 24.

    G. D. Pangu and D. L. Feke, Ultrasonics, 46, 289 (2007).

    Article  CAS  Google Scholar 

  25. 25.

    J. Wang and J. Dual, Ultrasonics, 52, 325 (2012).

    Article  Google Scholar 

  26. 26.

    J.D. McLean and P.K. Kilpatrick, J. Colloid Interface Sci., 189, 242 (1997).

    Article  CAS  Google Scholar 

  27. 27.

    Y. Abe, M. Kawaji and T. Watanabe, Exp. Therm. Fluid Sci., 26, 817 (2002).

    Article  CAS  Google Scholar 

  28. 28.

    X. Xi, F.B. Cegla, M. Lowe and A. Thiemann, Ultrasonics, 51, 1014 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Xie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Li, R., Lu, X. et al. Acoustically aided coalescence of water droplets and dehydration of crude oil emulsion. Korean J. Chem. Eng. 32, 643–649 (2015). https://doi.org/10.1007/s11814-014-0253-6

Download citation

Keywords

  • Acoustics
  • Ultrasonic Parameters
  • Dehydration