Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition

Abstract

This study focuses mainly on the synthesis of MnO2-ZrO2 nano-composite as a new inorganic adsorbent. Supercritical water was used as a preparation medium for particle deposited materials. MnO2-ZrO2 was prepared from metal nitrate solutions in supercritical region. The resulting sample was characterized by Fourier transform infrared (FTIR), X-ray fluorescence (XRF), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscope (TEM). Analyses of the TEM images show the possibility for crystallizing nano-sized particles. The synthesized adsorbent was then used for the removal of strontium(II) from the nuclear waste. Moreover, a number of factors such as aqueous phase pH, contact time and initial metal ions concentration in the adsorption process were investigated. Comparison of the adsorption efficiency of the MnO2-ZrO2 nano-particles with those of the non-nano particles shows a shift of uptake of the metal ions vs. pH curves towards lower pH values and a significant improvement in adsorption of strontium ions was observed by using the nano-adsorbent. The kinetic data corresponds well to the pseudo-second-order equation. The adsorption data for strontium(II) were well fitted by the Langmuir isotherm. The synthesized nano-composite also showed a strong affinity toward the removal of Y(III), Ni(II), Pb(II) and Co(II) from the nuclear radioactive waste.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Hua, Sh. Zhang, B. Pan, W. Zhang, L. Lv and Q. Zhang, J. Hazard. Mater., 211–212, 317 (2012).

    Article  Google Scholar 

  2. 2.

    C. Karthika and M. Sekar, I Res. J. Environ. Sci., 1, 34 (2012).

    Google Scholar 

  3. 3.

    C.N. R. Rao and A.K. Cheetham, J. Mater. Chem., 11, 2887 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    H. Badaruddin Ahmad, Y. Abbas, M. Hussain, N. Akhtar, T. Ansari, M. Zuber, Kh. Mahmood Zia and Sh. Ahmad Arain, Korean J. Chem. Eng., 31, 284 (2014).

    Article  Google Scholar 

  5. 5.

    A. Ramazanpour Esfahani, S. Hojati, A. Azimi, L. Alidokht, A. Khataee and M. Farzadian, Korean J. Chem. Eng., 31, 630 (2014).

    Article  Google Scholar 

  6. 6.

    H. I. Adegoke, F.A. Adekola, O. S. Fatoki and B. J. Ximba, Korean J. Chem. Eng., 31, 142 (2014).

    Article  CAS  Google Scholar 

  7. 7.

    Z. Shiri-Yekta, M.R. Yaftian and A. Nilchi, Korean J. Chem. Eng., 30, 1644 (2013).

    Article  CAS  Google Scholar 

  8. 8.

    T. Adschiri, K. Kanazawa and K. Arai, J. Am. Ceram. Soc., 75, 1019 (1992).

    Article  CAS  Google Scholar 

  9. 9.

    T. Adschiri, K. Kanazawa and K. Arai, J. Am. Ceram. Soc., 75, 2615 (1992).

    Article  CAS  Google Scholar 

  10. 10.

    Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino and K. Arai, J. Am. Ceram. Soc., 81, 2461 (1998).

    Article  CAS  Google Scholar 

  11. 11.

    Y. Hakuta, T. Adschiri, H. Hirakoso and K. Arai, Fluid Phase Equillib., 158–160, 733 (1999).

    Article  Google Scholar 

  12. 12.

    T. Adschiri, Y. Hakuta and K. Arai, J. Ind. Eng. Chem. Res., 39, 4901 (2000).

    Article  CAS  Google Scholar 

  13. 13.

    K. Kanamura, A. Goto, R. Ho, T. Umegaki, K. Toyoshima, K. Okada, Y. Hakuta, T. Adschiri and K. Arai, J. Electrochem. Solid-State Lett., 3, 256 (2000).

    Article  CAS  Google Scholar 

  14. 14.

    Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa and K. Arai, J. Mater. Chem., 9, 2671 (1999).

    Article  CAS  Google Scholar 

  15. 15.

    A. Cabanas, J. A. Darr, E. Lester and M. Poliakoff, J. Chem. Commun., 11, 901 (2000).

    Article  Google Scholar 

  16. 16.

    A. Cabanas, J. A. Darr, E. Lester and M. Poliakoff, J. Mater. Chem., 11, 561 (2001).

    Article  CAS  Google Scholar 

  17. 17.

    S. J. Ahmadi, N. Akbari, Z. Shiri-Yekta, M. H. Mashhadizadeh and A. Pourmatin, J. Radioanal. Nucl. Chem., DOI:10.1007/s10967-013-2852-9.

  18. 18.

    J. K. Moon, K.W. Kim, C. H. Jung, Y. G. Shul and E. H. Lee, J. Radioanal. Nucl. Chem., 246, 299 (2000).

    Article  CAS  Google Scholar 

  19. 19.

    A. Nilchi, A. Khanchi, H. Atashi, A. Bagheri and L. Nematollahi, J. Hazard. Mater., A137, 1271 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    A.R. Khanchi, R. Yavari and S.K. Pourazarsa, J. Radioanal. Nucl. Chem., 273, 141 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    A. Nilchi, M.R. Hadjmohammadi, S. Rasouli Garmarodi and R. Saberi, J. Hazard. Mater., 167, 531 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    S. J. Ahmadi, S. Sadjadi and M. Hosseinpour, J. Ultrason. Sonochem., 20, 408 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    M. Outokesh, M. Hosseinpour, S. J. Ahmadi, T. Mousavand, S. Sadjadi and W. Soltanian, J. Ind. Eng. Chem. Res., 50, 3540 (2011).

    Article  CAS  Google Scholar 

  24. 24.

    I. M. Ali, A. A. El-Zahhar and E. S. Zakaria, J. Radioanal. Nucl. Chem., 264, 637 (2005).

    Article  CAS  Google Scholar 

  25. 25.

    S. H. El-Khouly, J. Radioanal. Nucl. Chem., 270, 391 (2006).

    Article  CAS  Google Scholar 

  26. 26.

    E. Metwally, T. El-Zakla and R.R. Ayoub, J. Nucl. Radiochem. Sci., 9, 1 (2008).

    Article  CAS  Google Scholar 

  27. 27.

    M. Davis, Elsevier Publishing Co., Amsterdam, 318 (1963).

  28. 28.

    S. P. Mishra, S. S. Dubey and D. Tiwari, J. Radioanal. Nucl. Chem., 261, 457 (2004).

    Article  CAS  Google Scholar 

  29. 29.

    V. Vesely and V. Pekarek, Talanta, 19, 219 (1972).

    Article  CAS  Google Scholar 

  30. 30.

    S. Inan, H. Tel and Y. Altas, J. Radioanal. Nucl. Chem., 267, 615 (2006).

    Article  CAS  Google Scholar 

  31. 31.

    J. Peric, M. Trgo and N. V. Medvidovic, J. Water Res., 38, 1839 (2004).

    Article  Google Scholar 

  32. 32.

    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  33. 33.

    D. Mohan and S. Chander, J. Colloid Interface Sci., 299, 57 (2006).

    Article  Google Scholar 

  34. 34.

    H. Freundlich, Z. Phys. Chem., 57, 384 (1906).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Ahmadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S.J., Akbari, N., Shiri-Yekta, Z. et al. Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition. Korean J. Chem. Eng. 32, 478–485 (2015). https://doi.org/10.1007/s11814-014-0249-2

Download citation

Keywords

  • Supercritical Water Synthesis
  • MnO2-ZrO2 Nano-composite
  • Ion Exchanger
  • Strontium
  • Adsorption