Skip to main content

Development of a rule to maximize the research octane number (RON) of the isomerization product from light naphtha

Abstract

The isomerization process is a substantial technology to produce clean fuel from linear paraffinic species existing in light naphtha. We investigated the influence of hydrocracking reactions besides the other reactions on the research octane number (RON) of the isomerization product. A reaction network and a kinetic model including fifteen lumps and sixteen reactions were developed. Several experiments were carried out in a pilot plant to estimate kinetic parameters. The accuracy of the model was evaluated by comparing the model prediction with the experimental results. The maximum RON and process yield were strongly dependent on the temperature, hydrogen to hydrocarbon molar ratio (H2/Oil) and liquid hourly space velocity (LHSV). Also, increasing the reaction temperature compensated for the negative effects of raising the LHSV and H2/Oil in RON maximization. Moreover, we concluded that the hydro cracking reactions were very effective on RON, such that they can dominate the role of the other reactions. By sensitivity analysis in this research, a rule was obtained to declare the effect of operating condition on maximization of RON and the method of revamping of naphtha isomerization reactor.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.D. Estrada-Villagrana and C. Paz-Zavala, Fuel, 86, 1325 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    S. Sadighi, S. Zahedi, R. Hayati and M. Bayat, Energy Technol., 1(12), 743 (2013).

    Article  CAS  Google Scholar 

  3. 3.

    P. Leprine, Conversion Processes, Editions Technip. (2001).

    Google Scholar 

  4. 4.

    J. R. H. Ross, Heterogeneous Catalysis, Elsevier (2012).

    Google Scholar 

  5. 5.

    R. G. Tailleur and J. B. Platin, J. Catal., 255(1), 79 (2008).

    Article  CAS  Google Scholar 

  6. 6.

    S. Sadighi, A. Ahmad and M. Shirvani, Chem. Eng. Technol., 35(5), 919 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    K. Watanabe, N. Chiyoda and T. Kawakani, 18th Saudi Arabia-Japan Joint Symposium Dharan, Saudi Arabia, November 16-17 (2008).

    Google Scholar 

  8. 8.

    R. Issadi, F. Garin and C. E. Chitour, Catal. Today, 113, 174 (2006).

    Article  Google Scholar 

  9. 9.

    R. G. Tailleur and C. Albornoz, Catal. Today, 150, 308 (2010).

    Article  Google Scholar 

  10. 10.

    K. Wantabe, T. Kawakami, K. Baba, N. Oshio and T. Kimira, Appl. Catal. A: Gen., 276, 145 (2004).

    Article  Google Scholar 

  11. 11.

    S. Zahedi Abghari, J. Towfighi Darian, R. Karimzadeh and M.R. Omidkhah, Korean J. Chem. Eng., 25(4), 681 (2008).

    Article  Google Scholar 

  12. 12.

    S. Sadighi, A. Ahmad and M. Rashidzadeh, Korean J. Chem. Eng., 27(4), 1099 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    S. Zahedi Abghari, S. Shokri, B. Baloochi, M. Ahmadi Marvast, S. Ghanizadeh and B. Afshin, Korean J. Chem. Eng., 28(1), 93 (2011).

    Article  Google Scholar 

  14. 14.

    J. Sadeghzadeh Ahari, S. J. Ahmadpanah, A. Khaleghinasab and M. Kakavand, Petroleum Coal, 47(3), 26 (2005).

    Google Scholar 

  15. 15.

    E.A. Medina and J.I.P. Paredes, Math. Comp. Model., 49, 207 (2009).

    Article  Google Scholar 

  16. 16.

    K. Surla, H. Vleeming, D. Guillaume and P. Galtier, Chem. Eng. Sci., 59, 4773 (2004).

    Article  CAS  Google Scholar 

  17. 17.

    A. Bernas and D. Y. Murzin, Chem. Eng. J., 115, 23 (2005).

    Article  CAS  Google Scholar 

  18. 18.

    F. Sandelin, T. Salmi and D. Yu. Murzin, Ind. Eng. Chem. Res., 45, 558 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    H. S. A. Douwes, J. Mol. Catal. A: Chem., 272, 220 (2007).

    Article  CAS  Google Scholar 

  20. 20.

    M. Khurshid and S. Al-Khattaf, Appl. Catal. A: Gen., 368, 56 (2009).

    Article  CAS  Google Scholar 

  21. 21.

    N. V. Chekantsev, M. S. Gyngazova and E. D. Ivanchina, Chem. Eng. J., 238, 120 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    J. Ancheyta, Modeling and simulation of catalytic reactors for petroleum refining, Wiley (2011).

    Book  Google Scholar 

  23. 23.

    D. S. G. Jones and P.R. Pujado, Handbook of petroleum processing, Springer (2006).

    Book  Google Scholar 

  24. 24.

    S. Parkash, Refining processes handbook, Elsevier (2003).

    Google Scholar 

  25. 25.

    M.A. Fahim, T. A. Alsahhaf and A. Elkilani, Fundamental sof petroleum refining, Elsevier (2010).

    Google Scholar 

  26. 26.

    M.R. Riazi, Characterization and properties of petroleum fractions, ASTM International Publishing (2005).

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Hayati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayati, R., Abghari, S.Z., Sadighi, S. et al. Development of a rule to maximize the research octane number (RON) of the isomerization product from light naphtha. Korean J. Chem. Eng. 32, 629–635 (2015). https://doi.org/10.1007/s11814-014-0243-8

Download citation

Keywords

  • Isomerization
  • Optimal Operation
  • Kinetic Model
  • RON
  • Light Naphtha