Skip to main content
Log in

Effect of bed configuration of immobilized biocatalysts on penicillin G hydrolysis efficiency

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The external and internal mass transfer of Penicillin G in the process of its enzymatic hydrolysis to 6-Aminopenicillanic acid under competitive and non-competitive inhibitions have been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor, both with Penicillin amidase immobilized in Eupergit C. The Penicillin G mass transfer and hydrolysis enzymatic rates have been analyzed by means of the ratios’ values between the oxygen mass transfer coefficients, effectiveness factors, external mass flows and Penicillin G concentrations at the biocatalyst particle surface for the considered bioreactors. The results indicated that the bioreactor with mobile bed is more efficient especially for biocatalyst particles with diameter under 1.5 mm. For larger particles the performances of the two bioreactors become similar. Moreover, taking into consideration the external mass flow of Penicillin G and the number of enzymatic hydrolysis cycles, the basket bioreactor is recommended. The mathematical equations proposed are in good concordance with the experimental results, the average deviations varying from ±4.11% for the bioreactor with mobile bed of immobilized Penicillin amidase to ±5.03% for the basket bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bianchi, R. Golini, R. Bortolo and P. Cesti, Enzyme Microb. Technol., 18, 592 (1996).

    Article  CAS  Google Scholar 

  2. K. Katchalski-Katzir and D.M. Kraemer, J. Mol. Catal. B: Enzym., 10, 157 (2000).

    Article  CAS  Google Scholar 

  3. Z. Knezevi, N. Milosavi, D. Bezbradica, Z. Jakovljevi and R. Prodanovi, Biochem. Eng. J., 30, 269 (2006).

    Article  Google Scholar 

  4. A. M. Lupasteanu, A. I. Galaction and D. Cascaval, Rom. Biotechnol. Lett., 12, 3131 (2007).

    CAS  Google Scholar 

  5. A. I. Galaction, R.M. Matran, M. Turnea, A. C. Blaga and D. Cascaval, Chem. Eng. Commun. (2014), DOI: 10.1080/00986445.2013. 819801.

    Google Scholar 

  6. R.M. Matran, A. I. Galaction, A.C. Blaga, M. Turnea and D. Cascaval, Environ. Eng. Manag. J., 12, 2261 (2013).

    CAS  Google Scholar 

  7. A. Gamarra, C. Cuevas and G. Lescano, J. Ferm. Technol., 64, 25 (1986).

    Article  CAS  Google Scholar 

  8. N. Kolagerakis and L. A. Behie, Bioprocess Biosyst. Eng., 17, 151 (1996).

    Article  Google Scholar 

  9. I. Pitault, P. Fongarland, D. Koepke, M. Mitrovic, D. Ronze and M. Forissier, Chem. Eng. Sci., 60, 6240 (2007).

    Article  Google Scholar 

  10. G. Sheelu, G. Kavitha and N.W. Fadnavis, J. Am. Oil. Chem. Soc., 85, 739 (2008).

    Article  CAS  Google Scholar 

  11. H. Teshima and Y. Ohashi, J. Chem. Eng. Jpn., 10, 70 (1977).

    Article  CAS  Google Scholar 

  12. J. Warna, M. Ronnholm, T. Salmi and K. Keikko, Computer-Aided Chem. Eng., 10, 1009 (2002).

    Article  CAS  Google Scholar 

  13. D. Cascaval, M. Turnea, A. I. Galaction and A. C. Blaga, Biochem. Eng. J., 69, 113 (2012).

    Article  CAS  Google Scholar 

  14. A. I. Galaction, D. Cascaval, M. Turnea and E. Folescu, Bioprocess Biosyst. Eng., 27, 263 (2005).

    Article  CAS  Google Scholar 

  15. A. I. Galaction, A. M. Lupasteanu and D. Cascaval, Environ. Eng. Manag. J., 6, 101 (2007).

    CAS  Google Scholar 

  16. J. Torres-Bacete, M. Arroyo, R. Torres-Guzman, I. de la Malta, M.P. Castillon and C. Acebal, Biotechnol. Lett., 22, 1011 (2000).

    Article  CAS  Google Scholar 

  17. R. Kumar, A.K. Suresh and H.S. Shankar, J. Chem. Technol. Biotechnol., 66, 243 (1996).

    Article  CAS  Google Scholar 

  18. D. Warburton, P. Dunnil and M.D. Lilly, Biotechnol. Bioeng., 15, 13 (1973).

    Article  CAS  Google Scholar 

  19. A. Illanes, Enzyme biocatalysis: Principles and applications, Springer, New York (2008).

    Book  Google Scholar 

  20. R. Kumar, A.K. Suresh and H.S. Shankar, J. Chem. Technol. Biotechnol., 66, 243 (1996).

    Article  CAS  Google Scholar 

  21. R. H. Perry and C.H. Chilton, Chemical Engineers’ Handbook, McGraw-Hill, New York (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Caşcaval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galaction, AI., Blaga, A.C., Matran, R.M. et al. Effect of bed configuration of immobilized biocatalysts on penicillin G hydrolysis efficiency. Korean J. Chem. Eng. 32, 216–221 (2015). https://doi.org/10.1007/s11814-014-0231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0231-z

Keywords

Navigation