Skip to main content
Log in

Numerical simulation of CO2 diffusion and reaction into aqueous solutions of different absorbents

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A numerical model comprising a system of partial differential equations was set up to describe the diffusion and reaction of carbon dioxide into aqueous solutions of different absorbents. The solution of the governing equation was a function of the physical and chemical parameters involved, such as Henry constant, diffusion coefficients and reaction rates. Although these parameters have been estimated and reported in literature, uncertainty still exists about their reliability. Comparison between numerical predictions and experimental values from specifically designed experiments shows them to be in good agreement, thus increasing the confidence on the correctness of these parameters, which form then the basis for a proper design of industrial units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gáspár and A.-M. Cormos, Comput. Chem. Eng., 35, 2044 (2011).

    Article  Google Scholar 

  2. S.A. Jayarathna, B. Lie and M. C. Melaaen, Comput. Chem. Eng., 53, 178 (2013).

    Article  CAS  Google Scholar 

  3. R. Maceiras, E. Alvarez and M. Cancela, Chem. Eng. J., 138, 295 (2008).

    Article  CAS  Google Scholar 

  4. J.-J. Ko, T. C. Tsai, C.Y. Lin, H.M. Wang and M. H. Li, J. Chem. Eng. Data, 46, 160 (2001).

    Article  CAS  Google Scholar 

  5. A. H. G. Cents, D.W. F. Brilman and G. F. Versteeg, Chem. Eng. Sci., 56, 1075 (2001).

    Article  CAS  Google Scholar 

  6. A. Samanta, S. Roy and S. S. Bandyopadhyay, J. Chem. Eng. Data, 52, 1381 (2007).

    Article  CAS  Google Scholar 

  7. H. Knuutila, O. Juliussen and H. F. Svendsen, Chem. Eng. Sci., 65, 2177 (2010).

    Article  CAS  Google Scholar 

  8. H. Hikita, S. Asai and T. Takatsuka, Chem. Eng. J., 13, 7 (1977).

    Article  CAS  Google Scholar 

  9. R. Pohorecki and W. Moniuk, Chem. Eng. Sci., 43, 1677 (1988).

    Article  CAS  Google Scholar 

  10. P.W. J. Derks, T. Kleingeld, C. van Aken, J. A. Hogendoorn and G. F. Versteeg, Chem. Eng. Sci., 61, 6837 (2006).

    Article  CAS  Google Scholar 

  11. W. J. DeCoursey, Chem. Eng. Sci., 29, 1867 (1974).

    Article  CAS  Google Scholar 

  12. M. H. Al-Marzouqi, M. H. El-Naas, S.A.M. Marzouk, M. A. Al-Zarooni, N. Abdullatif and R. Faiz, Sep. Purif. Technol., 59, 286 (2008).

    Article  CAS  Google Scholar 

  13. S. Shirazian, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi and A. Marjani, Chem. Eng. Technol., 35, 1077 (2012).

    CAS  Google Scholar 

  14. J.-L. Li and B.-H. Chen, Sep. Purif. Technol., 41, 109 (2005).

    Article  CAS  Google Scholar 

  15. A. Gabelman and S.-T. Hwang, J. Membr. Sci., 159, 61 (1999).

    Article  CAS  Google Scholar 

  16. Z. Qi and E. L. Cussler, J. Membr. Sci., 23, 321 (1985).

    Article  CAS  Google Scholar 

  17. Z. Qi and E. L. Cussler, J. Membr. Sci., 23, 333 (1985).

    Article  CAS  Google Scholar 

  18. A. Bottino, G. Capannelli, A. Comite and R. Di Felice, Sep. Purif. Technol., 59, 85 (2008).

    Article  CAS  Google Scholar 

  19. P. M. M. Blauwhoff, G. F. Versteeg and W. P. M. van Swaaij, Chem. Eng. Sci., 39, 207 (1984).

    Article  CAS  Google Scholar 

  20. P.D. Vaidya and E. Y. Kenig, Chem. Eng. Sci., 30, 1467 (2007).

    CAS  Google Scholar 

  21. G. Astarita and D.W. Savage, Chem. Eng. Sci., 35, 649 (1980).

    Article  CAS  Google Scholar 

  22. E.D. Snijder, M. J. Riele, G. F. Versteeg and W. P. M. Van Swaaij, J. Chem. Eng. Data, 38, 475 (1993).

    Article  CAS  Google Scholar 

  23. A. Samanta and S. S. Bandyopadhyay, Chem. Eng. Sci., 62, 7312 (2007).

    Article  CAS  Google Scholar 

  24. V.Y. Dindore, D.W. F. Brilman and G. F. Versteeg, J. Membr. Sci., 255, 275 (2005).

    Article  CAS  Google Scholar 

  25. D.W. Savage, G. Astarita and S. Joshi, Chem. Eng. Sci., 35, 1513 (1980).

    Article  CAS  Google Scholar 

  26. R. C. Reid, J. M. Prausnitz and B. E. Poling, The properties of gases and liquids, McGraw-Hill, Singapore (1988).

    Google Scholar 

  27. G. Astarita, D.W. Savage and A. Bisio, Gas Treating with Chemical Solvents, Wiley, New York (1983).

    Google Scholar 

  28. O. Levenspiel, Chemical Reaction Engineering, 2nd Ed. New York, Wiley (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Di Felice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comite, A., Costa, C., Di Felice, R. et al. Numerical simulation of CO2 diffusion and reaction into aqueous solutions of different absorbents. Korean J. Chem. Eng. 32, 239–247 (2015). https://doi.org/10.1007/s11814-014-0225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0225-x

Keywords

Navigation