Korean Journal of Chemical Engineering

, Volume 32, Issue 2, pp 222–229 | Cite as

Interfacial resistance in CO2-normal alkane and N2-normal alkane systems: An experimental and modeling investigation

  • Fatemeh Nikkhou
  • Peyman Keshavarz
  • Shahab Ayatollahi
  • Ali Zolghadr
Transport Phenomena

Abstract

Gas-liquid systems are one of the most common systems which appear in hydrocarbon reservoirs; therefore, the investigation of the interfacial properties and effect of temperature and pressure on these systems is crucial for optimizing the plan of production. In this study, interfacial resistances for N2-alkane and CO2-alkane systems were estimated at different pressures and temperatures. A model was developed to calculate interfacial resistance using the equilibrium and dynamic interfacial tension data which were measured by pendant drop technique at different pressures and temperatures. Interfacial resistances were estimated for a temperature range from 313 to 393 K and pressures from 0.34 to 41.7MPa. The results showed that interfacial resistance in N2-alkane and CO2-alkane systems decreased at higher pressure. Moreover, In N2-alkane systems, the interfacial resistance decreases as the temperature increases; however, in CO2-alkane system the interfacial resistance depends on the diffusion and solubility interactions; it will decrease, increase or remain constant.

Keywords

Interfacial Resistance Interfacial Tension Carbon Dioxide Nitrogen Normal Alkanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2014_224_MOESM1_ESM.pdf (227 kb)
Supplementary material, approximately 226 KB.

References

  1. 1.
    D. Yang and Y. Gu, Ind. Eng. Chem. Res., 47, 5447 (2008).CrossRefGoogle Scholar
  2. 2.
    D. Yang and Y. Gu, SPE102481 the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, U.S.A. (2006).Google Scholar
  3. 3.
    D. Yang, P. Tontiwachwuthikul and Y. Gu, J. Chem. Eng. Data, 50, 1242 (2005).CrossRefGoogle Scholar
  4. 4.
    D. Yang and Y. Gu, Pet. Sci. Technol., 23, 1099 (2005).CrossRefGoogle Scholar
  5. 5.
    I. S. Khattab, F. Bandarkar, M.A.A. Fakhree and A. Jouyban, Korean J. Chem. Eng., 29, 812 (2012).CrossRefGoogle Scholar
  6. 6.
    S.C. Ayirala and D.N. Rao, J. Colloid Interface Sci., 299, 321 (2006).CrossRefGoogle Scholar
  7. 7.
    S.C. Ayirala and D.N. Rao, Fluid Phase Equilib., 249, 82 (2006).CrossRefGoogle Scholar
  8. 8.
    W. Lewis and W. Whitman, Ind. Eng. Chem., 16, 1215 (1924).CrossRefGoogle Scholar
  9. 9.
    L. Scriven and R. Pigford, AIChE J., 4, 439 (1958).CrossRefGoogle Scholar
  10. 10.
    L. Scriven and R. Pigford, AIChE J., 5, 397 (1959).CrossRefGoogle Scholar
  11. 11.
    R. Searle and K. F. Gordon, AIChE J., 3, 490 (1957).CrossRefGoogle Scholar
  12. 12.
    J. A. Rhim and J. H. Yoon, Korean J. Chem. Eng., 22, 201 (2005).CrossRefGoogle Scholar
  13. 13.
    R.W. Schrage, A theoretical study of interphase mass transfer, Columbia University Press (1953).Google Scholar
  14. 14.
    R. E. Treybal, Mass-transfer operations, McGraw-Hill, New York (1980).Google Scholar
  15. 15.
    H.-C. Yang, J.-H. Kim, Y.-C. Seo and Y. Kang, Korean J. Chem. Eng., 13, 261 (1996).CrossRefGoogle Scholar
  16. 16.
    R. De Boer, S. Wellington and K. Tschiedel, Colloids Surf., 9, 79 (1984).CrossRefGoogle Scholar
  17. 17.
    H. Reamer, J. Opfell and B. Sage, Ind. Eng. Chem., 48, 275 (1956).CrossRefGoogle Scholar
  18. 18.
    S.M. Walas, Modeling with differential equations in chemical engineering, Butterworth-Heinemann Boston, MA (1991).Google Scholar
  19. 19.
    F. Civan and M. Rasmussen, SPE J., 11, 71 (2006).CrossRefGoogle Scholar
  20. 20.
    A. K. Tharanivasan, C. Yang and Y. Gu, J. Pet. Sci. Eng., 44, 269 (2004).CrossRefGoogle Scholar
  21. 21.
    H. Saboorian Jooybari, SPE 157734 the SPE Heavy Oil Conference, Calgary, Alberta, Canada (2012).Google Scholar
  22. 22.
    S.R. Etminan, M. Pooladi-Darvish, B. Maini and Z. J. Chen, CSUG/ SPE 138191 the Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada (2010).Google Scholar
  23. 23.
    N. Policarpo, SPE 160912-STU the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, U.S.A. (2012).Google Scholar
  24. 24.
    F. Civan and M. L. Rasmussen, SPE 75135 the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK (2002).Google Scholar
  25. 25.
    F. Civan and M. L. Rasmussen, SPE 67319 the SPE Mid Continent Operations Symposium, Oklahoma City, OK (2001).Google Scholar
  26. 26.
    Y. Zhang, C. Hyndman and B. Maini, J. Pet. Sci. Eng., 25, 37 (2000).CrossRefGoogle Scholar
  27. 27.
    C. Yang and Y. Gu, Ind. Eng. Chem. Res., 44, 4474 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Chaodong and G. Yongan, SPE 84202 the SPE Annual Technical Conference and Exhibition, Denever, Colorado, U.S.A. (2003).Google Scholar
  29. 29.
    J. Drelich, C. Fang and C. White, Encyclopedia of Surface and Colloid Science, 3152 (2002).Google Scholar
  30. 30.
    J. Juza, Czech. J. Phys., 47, 351 (1997).CrossRefGoogle Scholar
  31. 31.
    A. Zolghadr, M. Escrochi and S. Ayatollahi, J. Chem. Eng. Data, 58, 1168 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Zolghadr, M. Riazi, M. Escrochi and S. Ayatollahi, Ind. Eng. Chem. Res., 52, 9851 (2013).CrossRefGoogle Scholar
  33. 33.
    D. Yang, Interfacial interactions of the crude oil-reservoir brine-reservoir rock systems with dissolution of carbon dioxide under reservoir conditions, Ph.D. Dissertation, University of Regina, Canada (2005).Google Scholar
  34. 34.
    R. Ghez, Diffusion phenomena: Cases and studies, Springer (2001).CrossRefGoogle Scholar
  35. 35.
    F. Civan and M. Rasmussen, SPE 84072 the SPE Annual Technical Conference and Exhibition, Denver, Colorado, U.S.A. (2003).Google Scholar
  36. 36.
    E. Saatdjian and W. Janna, Appl. Mech. Rev., 54, 72 (2001).CrossRefGoogle Scholar
  37. 37.
    M. A. Matthews, J. B. Rodden and A. Akgerman, J. Chem. Eng. Data, 32, 319 (1987).CrossRefGoogle Scholar
  38. 38.
    R. H. Perry, D.W. Green and J.O. Maloney, Perry’s chemical engineers’ handbook, McGraw-Hill, New York (2008).Google Scholar
  39. 39.
    Y. Gu and D. Yang, Paper 2004-083 the 55th Canadian International Petroleum Conference, Calgary, Alberta, Canada (2004).Google Scholar
  40. 40.
    M. Nobakht, S. Moghadam and Y. Gu, Fluid Phase Equilib., 265, 94 (2008).CrossRefGoogle Scholar
  41. 41.
    M. Nobakht, S. Moghadam and Y. Gu, Ind. Eng. Chem. Res., 47, 8918 (2008).CrossRefGoogle Scholar
  42. 42.
    B. Kvamme, T. Kuznetsova, A. Hebach, A. Oberhof and E. Lunde, Compu. Mater. Sci., 38, 506 (2007).CrossRefGoogle Scholar
  43. 43.
    T. Nguyen and S. Farouq Ali, J. Can. Pet. Technol., 37, 24 (1998).Google Scholar
  44. 44.
    R. Simon and D. Graue, J. Pet. Technol., 17, 102 (1965).CrossRefGoogle Scholar
  45. 45.
    P. Guo, Z. Wang, Y. Xu and J. Du, Mass Transfer in Chemical Engineering Processes, November 4 (2011), DOI: 10.5772/22868.Google Scholar
  46. 46.
    E. Zamanian, M. Hemmati and M. S. Beiranvand, Nafta, 63, 351 (2012).Google Scholar
  47. 47.
    H. Saad and E. Gulari, J. Phys. Chem., 88, 136 (1984).CrossRefGoogle Scholar
  48. 48.
    A. Grogan, V. Pinczewski, G. Ruskauff and O. FM, SPE Reservoir Eng., 3, 93 (1988).CrossRefGoogle Scholar
  49. 49.
    G. Moritis, Oil Gas J., 102, 45 (2004).Google Scholar
  50. 50.
    F. Stalkup Jr., Miscible Displacement, Monograph Series, SPE Richardson, TX (1983).Google Scholar
  51. 51.
    S. Ali and S. Thomas, J. Can. Pet. Technol., 39, 7 (2000).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Fatemeh Nikkhou
    • 1
  • Peyman Keshavarz
    • 1
  • Shahab Ayatollahi
    • 2
  • Ali Zolghadr
    • 2
  1. 1.School of Chemical and Petroleum Engineering, Chemical Engineering DepartmentShiraz UniversityShirazIran
  2. 2.Enhanced Oil Recovery Research Centre, School of Chemical and Petroleum EngineeringShiraz UniversityShirazIran

Personalised recommendations