Skip to main content
Log in

Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cheryan and N. Rajagopalan, J. Membr. Sci., 151, 15 (1998).

    Article  Google Scholar 

  2. M. Abbasi, A. Salahi, M. Mirfendereski, T. Mohammadi and A. Pak, Desalination, 252, 113 (2010).

    Article  CAS  Google Scholar 

  3. P. Srijaroonrat, E. Julien and Y. Aurelle, J. Membr. Sci., 159, 11 (1999).

    Article  CAS  Google Scholar 

  4. H. Bai, X. Wang, Y. Zhou and L. Zhang, J. Prog. Nat. Sci., 250, 3 (2012).

    Google Scholar 

  5. T. Mohammadi, M. Kazemimoghadam and M. Saadabadi, Desalination, 157, 369 (2003).

    Article  CAS  Google Scholar 

  6. A. Salahi, M. Abbasi and T. Mohammadi, Desalination, 251, 153 (2010).

    Article  CAS  Google Scholar 

  7. B. Yu, H. Cong and X. Zhao, J. Prog. Nat. Sci., 22, 662 (2012).

    Google Scholar 

  8. C. Cheng, J. Uhe, X. Yang, Y. Wu and D. Li, J. Prog. Nat. Sci., 22, 670 (2012).

    Google Scholar 

  9. Y. G. Dave and A. V. R. Reddy, Desalination, 282, 9 (2011).

    Article  CAS  Google Scholar 

  10. D. Yang, X. Zhang, L. Yuan and J. Hu, J. Prog. Nat. Sci., 19, 1305 (2009).

    Article  CAS  Google Scholar 

  11. J. Xu, X. Feng, P. Chen and C. Gao, J. Membr. Sci., 413, 62 (2012).

    Article  Google Scholar 

  12. E. M.V. Hoek, J. Allred, T. Knoell and B. H. Jeong, J. Membr. Sci., 314, 33 (2008).

    Article  CAS  Google Scholar 

  13. S. C. Tu, V. Ravindran and M. Pirbazari, J. Membr. Sci., 265, 29 (2005).

    Article  CAS  Google Scholar 

  14. B. Van der Bruggen, M. Manttari and M. Nystrom, Sep. Purif. Technol., 63, 251 (2008).

    Article  Google Scholar 

  15. S. F. E. Boerlage, M.D. Kennedy, P. A.C. Bonne, G. Galjaard and J. C. Schippers, Desalination, 113, 231 (1997).

    Article  CAS  Google Scholar 

  16. N. Yin, S. Chen, Y. Ouyang, L. Tang, J. Yang and H. Wang, J. Prog. Nat. Sci., 21, 472 (2011).

    Article  Google Scholar 

  17. S. Ballo, M. Liu, L Hou and J. Chang, J. Prog. Nat. Sci., 19, 873 (2009).

    Article  CAS  Google Scholar 

  18. S. Gunalan, R. Sivaraj and V. Rajendran, J. Prog. Nat. Sci., 22, 695 (2012).

    Google Scholar 

  19. H. Shokrkar, A. Salahi, N. Kasiri and T. Mohammadi, Chem. Eng. Res. Des., 90, 846 (2012).

    Article  CAS  Google Scholar 

  20. T.M. Hwang, H. Oh, Y. K. Choung, S. Oh, M. Jeon, J.H. Kim, H. N. Nam and S. Lee, Desalination, 247, 285 (2009).

    Article  Google Scholar 

  21. Q. F. Liu, S.H. Kim and S. Lee, Sep. Purif. Technol., 70, 96 (2009).

    Article  CAS  Google Scholar 

  22. S. S. Madaeni and A. R. Kurdian, Chem. Eng. Res. Des., 89, 456 (2011).

    Article  CAS  Google Scholar 

  23. APHA-American Public Health Association/American Water Works Association/Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 2001, 20th Ed., Washington DC, USA.

    Google Scholar 

  24. S. Rezaei HoseinAbadi, M.R. Sebzari, M. Hemati, F. Rekabdar and T. Mohammadi, Desalination, 265, 222 (2011).

    Article  Google Scholar 

  25. T. Mohammadi and A. Esmaeelifar, J. Membr. Sci., 254, 129 (2005).

    Article  CAS  Google Scholar 

  26. M. A. Hearst, S.T. Dumais, E. Osman, J. Platt and B. Scholkopf, IEEE Intell. Syst. Appl., 13, 18 (1998).

    Article  Google Scholar 

  27. M. Schmidt, Identifying speaker with support vector networks, In Interface 96 Proceedings, Sydney (1996).

    Google Scholar 

  28. N. Cristianini and J. S. Taylor, An introduction to support vector machine (and other kernel-based learning methods), Cambridge Univ. Press, Cambridge (2000).

    Book  Google Scholar 

  29. V.N. Vapnik, Statistical learning theory, Wiley, New York (1998).

    Google Scholar 

  30. M. Pontil and A. Verri, Neural Comput., 10, 955 (1998).

    Article  CAS  Google Scholar 

  31. A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A. H. Mohammadi, A. Fazlali and D. Richon, Fluid Phase Equilib., 316, 34 (2012).

    Article  CAS  Google Scholar 

  32. R.M. Balabin and E. I. Lomakina, Phys. Chem. Chem. Phys., 13, 11710 (2011).

    Article  CAS  Google Scholar 

  33. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines, World Scientific, Singapore (2002).

    Book  Google Scholar 

  34. J. A. K. Suykens and J. Vandewalle, Neural Process. Lett., 9, 293 (1999).

    Article  Google Scholar 

  35. K. Pelckmans, J. A. K. Suykens, T. Van Gestel,_D. De Brabanter, L. Lukas, B. Hamers, B. De Moor and J. Vandewalle, LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02-44, ESATSISTA, K.U. Leuven, Belgium (2002).

    Google Scholar 

  36. V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd Ed. Springer, New York (1995).

    Book  Google Scholar 

  37. C.Y. Zhao, H.X. Zhang, X.Y. Zhang, M.C. Liu, Z.D. Hu and B.T. Fan, Toxicol., 217, 105 (2006).

    Article  CAS  Google Scholar 

  38. X. Peng, Pattern Recog. Lett., 44, 2678 (2011).

    Article  Google Scholar 

  39. G. Zanghirati and L. Zanni, Parallel Comput., 29, 535 (2003).

    Article  Google Scholar 

  40. J. Terzica, C.R. Nagarajahb and M. Alamgira, Sens. Actuators, 161, 278 (2010).

    Article  Google Scholar 

  41. S. Agarwal, V. V. Saradhi and H. Karnick, Neurocomputing., 71, 1230 (2008).

    Article  Google Scholar 

  42. R. Strack, V. Kecman, B. Strack and Q. Li, Neurocomputing, 59, 101 (2013).

    Google Scholar 

  43. D. C. Li and Y. H. Fang, Expert. Syst. Appl., 34, 2013 (2008).

    Article  Google Scholar 

  44. E. Comak and A. Arslan, Expert. Syst. Appl., 35, 564 (2008).

    Article  Google Scholar 

  45. J.P. Hwang, S. Park and E. Kim, Expert. Syst. Appl., 38, 8580 (2011).

    Article  Google Scholar 

  46. M. K. Salooki, R. Abedini, H. Adib and H. Koolivand, Sep. Purif. Technol., 1, 82 (2011).

    Google Scholar 

  47. H. Adib, R. Haghbakhsh, M. Saidi, M. A. Takassi, F. Sharifi, M. Koolivand, M.R. Rahimpour and S. Keshtkari, J. Nat. Gas Sci. Eng., 10, 14 (2013).

    Article  CAS  Google Scholar 

  48. R. Haghbakhsh, H. Adib, P. Keshavarz, M. Koolivand and S. Keshtkari, Thermochim. Acta, 551, 124 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Hassanajili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adib, H., Hassanajili, S., Sheikhi-Kouhsar, M.R. et al. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment. Korean J. Chem. Eng. 32, 159–167 (2015). https://doi.org/10.1007/s11814-014-0218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0218-9

Keywords

Navigation