Skip to main content
Log in

Synthesis and thermal properties of polyimides containing azomethine linkage for processable high-performance engineering plastics

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new series of polyimides having azomethine functionality in backbone was synthesized by two-steps polycondensation method. Five substituted aromatic diamines—N-(4-aminobenzylidene)-2chloro-6-methylbenzene-1,4-diamine (DA1), N-(4-aminobenzylidene)-2-methoxybenzene-1,4-diamine (DA2), N-(4-aminobenzylidene)-2-methylbenzene-1,4-diamine (DA3), N-(4-aminobenzylidene)-3-methylbenzene-1,4-diamine (DA4) and N,(4-aminobenzylidene)-2-hydroxybenzene-1,4-diamine (DA5)—were prepared and condensed with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) to obtain poly(azomethine imide). All synthesized polyimides PI(1–5) were fully characterized by elemental analyses, FTIR, 1H-NMR, having amorphous nature and are soluble in dmac, dmf, and dmso, m-cresol due to presence of azomethine functionality. The inherent viscosities and moisture absorption of all polyimides lie in the range of 0.65–0.85 dL gm−1 and 0.68–0.82% respectively. Thermal stability was assessed by 10% weight loss temperature and the degradation temperature of the resultant polymers falls in the ranges from 480–535 °C in nitrogen. The glass transition temperature was in the range of 225–330 °C. Due to above mentioned attractive properties, polyimide-based material are attractive for processable high-performance engineering plastics and starting material for fabrication of new polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Ghosh and K. L. Metal, Polyimides: fundamentals and applications, Marcel Dekker, New York (1996).

    Google Scholar 

  2. F. Li, S. Fang, J. J. Ge, P. S. Honigfort, J. C. Chen and F.W. Harris, Polymer, 40, 4571 (1999).

    Article  CAS  Google Scholar 

  3. K. H. Choi, K. H. Lee and J. G. C. Jung, J. Polym. Sci Part A: Polym. Chem., 39, 3818 (2001).

    Article  CAS  Google Scholar 

  4. H. S. Li, J.G. Liu, J.M. Rui, L. Fan and S.Y. Yang, J. Polym. Sci. Part A: Polym. Chem., 44, 2665 (2006).

    Article  CAS  Google Scholar 

  5. C. P. Yang, Y. Y. Su and F. Z. Hsiao, Polymer, 45, 7529 (2004).

    Article  CAS  Google Scholar 

  6. D. J. Liaw, F. C. Chang, M. K. Leung, M.Y. Chou and M. Klaus, Macromolecules, 38, 4024 (2005).

    Article  CAS  Google Scholar 

  7. B. Liu, W. Hu, T. Matsumoto, Z. Jiang and S. J. Ando, J. Polym. Sci. Part A: Polym. Chem., 43, 3018 (2005).

    Article  CAS  Google Scholar 

  8. S. Tamai, A. Yamaguchi and M. Ohta, Polymer, 37, 3683 (1996).

    Article  CAS  Google Scholar 

  9. C. P. Yang, S. H. Hsiao and M. F. Hsu, J. Polym. Sci. Part A: Polym. Chem., 40, 524 (2002).

    Article  CAS  Google Scholar 

  10. C. P. Yang, R. S. Chen and K. H. Chen, J. Appl. Polym. Sci., 95, 922 (2005).

    Article  CAS  Google Scholar 

  11. T. M. Moy, C.D. Deporter and J. E. McGrath, Polymer, 34, 819 (1993).

    Article  CAS  Google Scholar 

  12. J. Xu, C. He and T. S. Chung, J. Polym. Sci. Part A: Polym. Chem., 39, 2998 (2001).

    Article  CAS  Google Scholar 

  13. H. B. Zhang and Z. Y. Wang, Macromolecules, 33, 4310 (2000).

    Article  Google Scholar 

  14. D. M. Hergenrother, K. A. Watson, J. G. Smith, J.W. Connel and R. Yokota, Polymer, 43, 5077 (2002).

    Article  CAS  Google Scholar 

  15. X. Z. Fang, Q. X. Li, Z. Wang, Z. H. Yang, L. X. Gao and M. X. J. Ding, J. Polym. Sci. Part A: Polym. Chem., 42, 2130 (2004).

    Article  CAS  Google Scholar 

  16. S. H. Hsiao and K. H. J. Lin, J. Polym. Sci. Part A: Polym. Chem., 43, 331 (2005).

    Article  CAS  Google Scholar 

  17. Y. Shao, Y. F. Li, X. Zhao, X.L. Wang, T. Ma and F. C. Yang, J. Polym. Sci. Part A: Polym. Chem., 44, 6836 (2006).

    Article  CAS  Google Scholar 

  18. D. S. Reddy, C. H. Chou, C. F. Shu and G. H. Lee, Polymer, 44, 557 (2003).

    Article  Google Scholar 

  19. S. Utkarsh, K.V. Rao and A. K. Rakshit, J. Appl. Polym. Sci., 88, 152 (2003).

    Google Scholar 

  20. A. Farcas and M. Grigoras, High Perform. Polym., 13, 201 (2001).

    Article  CAS  Google Scholar 

  21. M. Grigoras and C.O. Catanescu, Polym. Rev., 44, 131 (2004).

    Google Scholar 

  22. M. Grigoras and G. Colotin, Macromol. Chem. Phys., 202, 2262 (2001).

    Article  CAS  Google Scholar 

  23. C. H. Li and T. C. Chang, J. Polym. Sci. Part A: Polym. Chem., 29, 361 (1991).

    Article  CAS  Google Scholar 

  24. C. J. Yang and S. A. Jenekhe, Chem. Mater., 3, 878 (1991).

    Article  CAS  Google Scholar 

  25. S. Xie, Z. Zhang and W. Wei, J. Korean Phy. Soc., 51, 1536 (2007).

    Article  CAS  Google Scholar 

  26. Y. Zheng, Y. Zhai, G. Li, B. Guo, X. Zeng, L. Wang, H. Yu and J. Guo, J. Appl. Polym. Sci., 121, 702 (2011).

    Article  CAS  Google Scholar 

  27. D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to spectroscopy, Harcourt Brace College Publishers, New York, 211 (1996).

    Google Scholar 

  28. H. S. Hsiao, C.P. Yang and C. L. Chung, J. Polym. Sci., Part A Polym. Chem., 41, 2001 (2003).

    Article  CAS  Google Scholar 

  29. S. J. Zhang, Y.F. Li, X.L. Wang, D.X. Yin, Y. Shao and X. Zhao, Chinese Chem. Lett., 16, 1165 (2005).

    CAS  Google Scholar 

  30. R. Hariharan, S. Bhuvana and M. Sarojadevi, High Perform. Polym., 18, 163 (2006).

    Article  CAS  Google Scholar 

  31. O. Catenescu, M. Grigoras, G. Colotin, A. Dobreanu, N. Hurduc and C. I. Simionescu, Eur. Polym. J., 37, 2213 (2001).

    Article  Google Scholar 

  32. B. J. Vasanthi and L. Ravikumar, Eur. Polym. J., 43, 4325 (2007).

    Article  CAS  Google Scholar 

  33. G. Yu, C. Liu, H. Zhou, J. Wang, E. Lin and X. Jian, Polym., 50, 4520 (2009).

    Article  CAS  Google Scholar 

  34. P. Boinard, W. M. Banks and R. A. Pethrick, Polym., 46, 2218 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kaleem Khosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, R., Khosa, M.K., Jamal, M.A. et al. Synthesis and thermal properties of polyimides containing azomethine linkage for processable high-performance engineering plastics. Korean J. Chem. Eng. 32, 362–368 (2015). https://doi.org/10.1007/s11814-014-0205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0205-1

Keywords

Navigation