Skip to main content
Log in

Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al3+/Ti4+ ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N2 adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti4+/(Ti4++Al3+)>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Vandevivere, R. Bianchi and W. Verstraete, Review of Emerging Technologies, J. Chem. Technol. Biotechnol., 72, 289 (1998).

    Article  CAS  Google Scholar 

  2. H. Zollinger, Color Chemistry, VCH, Weinheim, 2nd Ed. (1991).

    Google Scholar 

  3. L. Joon-Yeob and J. Wan-Kuen, Environ. Eng. Res., 17(4), 179 (2012).

    Article  Google Scholar 

  4. L. Kumaresan, B. Palanisamy, M. Palanichamy and V. Murugesan, Environ. Eng. Res., 16(2), 81 (2011).

    Article  Google Scholar 

  5. N. Das and A. Samal, Micropor. Mesopor. Mater., 72, 219 (2004).

    Article  CAS  Google Scholar 

  6. R. Allmann, Acta Crystallogr. Sect. B, 24, 972 (1986).

    Article  Google Scholar 

  7. S. Miyata, Clays Clay Miner., 23, 369 (1975).

    Article  CAS  Google Scholar 

  8. H. F.W. Taylor, Miner. Mag., 39, 377 (1973).

    Article  CAS  Google Scholar 

  9. M. Valcheva-Traykova, V. Davidova and A. Weiss, J. Mater. Sci., 28, 2157 (1983).

    Article  Google Scholar 

  10. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 11, 173 (1991).

    Article  CAS  Google Scholar 

  11. F. Kooli, K. Kosuge and A. Tsunashima, J. Mater. Sci., 30, 4591 (1995).

    Article  CAS  Google Scholar 

  12. F. Kooli, K. Kosuge and A. Tsunashima, J. Solid State Chem., 118, 4591 (1995).

    Article  Google Scholar 

  13. J.M. Fernandez, C. Barriga, M.A. Ulibarri, F.M. Labajos and V. Rives, Chem. Mater., 9, 312 (1997).

    Article  CAS  Google Scholar 

  14. O. Saber and H. Tagaya, J. Incl. Phenom. Macrocyclic Chem., 45, 109 (2003).

    Article  CAS  Google Scholar 

  15. W. T. Reichle, J. Catal., 94, 547 (1985).

    Article  CAS  Google Scholar 

  16. O. Saber and H. Tagaya, J. Inclusion Phenom., 45, 17 (2003).

    Google Scholar 

  17. F. Leroux, M. Adachi-Pagano, M. Intissar, S. ChauvieÁre, C. Forano and J. P. Besse, J. Mater. Chem., 11, 105 (2001).

    Article  CAS  Google Scholar 

  18. C. Busetto, G. Del Piero and G. Manara, J. Catal., 85, 260 (1984).

    Article  Google Scholar 

  19. W.H. Zhang, X.D. Guo, J. He and Z.Y. Qian, J. Eur. Ceram. Soc., 28, 1623 (2008).

    Article  CAS  Google Scholar 

  20. X. Shu, W. Zhang, J. He, F. Gao and Y. Zhu, Solid State Sci., 8, 634 (2006).

    Article  CAS  Google Scholar 

  21. E. L. Crepaldi, J. Trondo, L. P. Ardoso and J.B. Valim, J. Colloid Surf. A: Physicochem. Eng. Aspects, 211, 103 (2002).

    Article  CAS  Google Scholar 

  22. Y. You, H. Zhao and G. F. Vance, J. Appl. Clay Sci., 21, 217 (2002).

    Article  CAS  Google Scholar 

  23. W. T. Reichle, Solid State Ionics, 22, 713 (1986).

    Article  Google Scholar 

  24. K.T. Ehlsissen, A. Delahaye-Vidal, P. Genin, M. Figlarz and P. Willmann, J. Mater. Chem., 3, 883 (1993).

    Article  CAS  Google Scholar 

  25. N. Das and A. Sandal, Micropor. Mesopor. Mater., 72, 219 (2004).

    Article  CAS  Google Scholar 

  26. M. J. Hernández-Moreno, M.A. Ulibarri, J.L. Rendon and C. Serna, J. Phys. Chem. Miner., 12, 34 (1985).

    Google Scholar 

  27. K. S.W. Sing, D. H. Everett, R. A.W. Haul, L. Moscou, R. Pierotti, J. Rouquerol and T. Sieminiewska, Pure Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  28. W. T. Reichle, S. Y. Kang and D. S. Everhardt, J. Catal., 101, 352 (1986).

    Article  CAS  Google Scholar 

  29. D. Tichit, N. Das, B. Coq and R. Durand, Chem. Mater., 14, 1530 (2002).

    Article  CAS  Google Scholar 

  30. O, Saber and H, Tagaya, J. Mater. Chem. Phys., 108, 449 (2008).

    Article  CAS  Google Scholar 

  31. N. Kannan, Indian J. Environ. Protec., 11(7), 514 (1991).

    CAS  Google Scholar 

  32. S. Lagergren, Handlingar, 24(4), 139 (1898).

    Google Scholar 

  33. L.C. Ho, G. Rudnick, H.W. Rix, J.C. Shields, H. Daniel, D.H. McIntosh, A. V. Filippenko, W. L. W. Sargent and M. Eracleous, Astrophysical. Journal, 541, 120 (2000).

    Article  CAS  Google Scholar 

  34. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  35. I. Langmuir, Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  36. H. M. F. Freundlich, Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  37. N. Barka, A. Assabbane, A. Nounah, A. Albourine and Y. Ait-Ichou, Sciences Technologie, B27, 09 (2008).

    Google Scholar 

  38. H.B. Fu, C. S. Pan, W.Q. Yao and Y. F. Zhu, J. Phys. Chem., B109, 22432 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Hosni or Omar Abdelkarim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosni, K., Abdelkarim, O., Frini-Srasra, N. et al. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides. Korean J. Chem. Eng. 32, 104–112 (2015). https://doi.org/10.1007/s11814-014-0199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0199-8

Keywords

Navigation