Skip to main content

Advertisement

Log in

Density measurement and equal density temperature of CO2+brine from Dagang — formation from 313 to 363 K

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Densities of CO2+Dagang — formation brine solution were measured by a magnetic suspension balance (MSB) in the pressure range from (10 to 18) MPa, at the temperatures from (313.15 to 363.15) K and CO2 mass fractions at 0, 0.0101, 0.0198 and 0.0299. The experimental results revealed that the solution densities increased linearly with the increasing pressure and CO2 concentration, while decreasing with the increasing temperatures in the experimental range. When the temperature increased from (313.15 to 363.15) K, the slopes of the densities versus (vs.) CO2 mass fractions decreased from (0.193 to 0.106) g·cm−3. A correlation equation was developed based on thermodynamic theory and experimental data. The absolute average deviation between the correlation equation and the experimental data was 0.05%, and the maximum deviation was 0.37% for the density of CO2+water/brine solution in common geological storage conditions. According to the density of CO2 — free brine and apparent molar volume of CO2 in brine, the equal density temperature (T e ) of CO2+Dagang brine solution was obtained at 464.67 K when pressure is 10MPa, which means that the density of brine dissolved with CO2 will be less than that of CO2-free brine when the temperature is higher than 464.67 K at 10MPa. In this work the formation temperature of the Dagang oilfield reservoir is from 313.15 K to 363.15 K, which is lower than the equal density temperature. Therefore, the safety of CO2 storage in Dagang oilfield reservoir can be guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC Third Assessment Report: Climate Change 2001 (TAR).

  2. P. Englezos and J.D. Lee, Korean J. Chem. Eng., 22, 671 (2005).

    Article  CAS  Google Scholar 

  3. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, Int. J. Greenh. Gas Control., 2, 9 (2008).

    Article  CAS  Google Scholar 

  4. S. M. Benson and D. R. Cole, Element., 4, 325 (2008).

    Article  CAS  Google Scholar 

  5. A. Anissa, H.R. Muhammad, L. Faical AND A. Abbaci, Korean J. Chem. Eng., 31(6), 1043 (2014).

    Article  Google Scholar 

  6. U. Zahid, Y. Lim, J. Jung and C. Han, Korean J. Chem. Eng., 28(3), 674 (2011).

    Article  CAS  Google Scholar 

  7. X. Ji, S.P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 44 (22), 8419 (2005).

    Article  CAS  Google Scholar 

  8. I. S. Khattab, F. Bandarkar, M.A. Fakhree and A. Jouyban, Korean J. Chem. Eng., 29(6), 812 (2012).

    Article  CAS  Google Scholar 

  9. P.M. Haugan and H. Drange, Nature, 357, 318 (1992).

    Article  CAS  Google Scholar 

  10. H. Drange and P.M. Haugan, Energy Convers. Manage., 33(5–8), 697 (1992).

    Article  CAS  Google Scholar 

  11. T. Ohsumi, N. Nakashiki, K. Shitashima and K. Hirama, Energy Convers. Manage., 33(5–8), 685 (1992).

    Article  CAS  Google Scholar 

  12. Y. Song, B. Chen, M. Nishio and M. Akai, Energy, 30(11–12), 2298 (2005).

    Article  CAS  Google Scholar 

  13. Z. Li, M. Dong, S. Li and L. Dai, J. Chem. Eng. Data, 49(4), 1026 (2004).

    Article  CAS  Google Scholar 

  14. Y. Zhang, F. Chang, Y. Song, J. Zhao, Y. Zhan and W. Jian, J. Chem. Eng. Data, 56(3), 565 (2011).

    Article  CAS  Google Scholar 

  15. Y. Song, W. Jian, Y. Zhang, M. Yang, J. Zhao, Y. Liu, W. Liu and Y. Shen, J. Chem. Eng. Data, 59, 1400 (2011).

    Article  Google Scholar 

  16. W. Yan, S. Huang and E.H. Stenby, Int. J. Greenh. Gas. Control, 5(6), 1460 (2011).

    Article  CAS  Google Scholar 

  17. J. Hu, Z. Duan, C. Zhu and I. Chou, Chem. Geol., 238(3–4), 249 (2007).

    Article  CAS  Google Scholar 

  18. C. Lu, W. S. Han, S.Y. Lee, B. J. McPherson and P. C. Lichtner, Adv. Water Res., 32(12), 1685 (2009).

    Article  CAS  Google Scholar 

  19. P. Karsten and S. Nicolas. Energy Convers. Manage., 48, 1761 (2007).

    Article  Google Scholar 

  20. P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. Ref. Data, 11(1), 15 (1982).

    Article  CAS  Google Scholar 

  21. J.E. Garcia, Lawrence Berkley National Laboratory Report, LBNL 49023 (2001).

    Google Scholar 

  22. L. Hnedkovsky, R.H. Wood and V. Majer. J. Chem. Thermodyn., 28(2), 125 (1996).

    Article  CAS  Google Scholar 

  23. Y. Song, M. Nishio, B. Chen, S. Someya and T. Ohsumi, J. Visualization., 6, 41 (2003).

    Article  CAS  Google Scholar 

  24. M.B. King, A. Mubarak, J.D. Kim and T.R. Bott, J. Supercrit. Fluids, 5(4), 296 (1992).

    Article  CAS  Google Scholar 

  25. A. Hebach, A. Oberhof and N. Dahmen, J. Chem. Eng. Data, 49(4), 950 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jian, W., Zhan, Y. et al. Density measurement and equal density temperature of CO2+brine from Dagang — formation from 313 to 363 K. Korean J. Chem. Eng. 32, 141–148 (2015). https://doi.org/10.1007/s11814-014-0193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0193-1

Keywords

Navigation