Skip to main content
Log in

Kinetics and activation energy of solvent swelling of coal altered by an ultrasonication-enhanced process

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We studied the kinetics and activation energy of solvent swelling in Qinyuan and Xiongshan coal in perchloroethylene (PCE) using conventional and ultrasonication-enhanced treatment conditions. Kinetic parameters suggested that both coal types exhibited anomalous diffusion regardless of treatment conditions. However, the kinetic parameter n, an exponent that crudely indicates the nature of the solvent diffusion process, decreased with the addition of ultrasound in both coal types. We suggest this change is due to the greater diffusion of PCE into coal during ultrasonication based on greater relaxation of the coal macromolecular network and microscopic agitation of the liquid solvent. Activation energy of coal solvent swelling decreased for both coal types with the addition of sonication, indicating that the energy barrier for the process was reduced in the presence of ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Castro-Marcano and J.P. Mathews, Energy Fuels, 25, 845 (2011).

    Article  CAS  Google Scholar 

  2. C. Chen, J. Gao and Y. Yan, Energy Fuels, 12, 1328 (1998).

    Article  CAS  Google Scholar 

  3. J.W. Larsen, T. K. Green and J. Kovac, J. Org. Chem., 50, 4729 (1985).

    Article  CAS  Google Scholar 

  4. A.M. Mastral, M.T. Izquierdo and B. Rubio, Fuel, 70, 139 (1991).

    Article  Google Scholar 

  5. H. F. Shui, Z. C. Wang and M. X. Cao, Fuel, 87, 2908 (2008).

    Article  CAS  Google Scholar 

  6. Ö. Sönmez and E. S. Giray, Energy Source. Part A, 33, 1901 (2011).

    Article  Google Scholar 

  7. T. Takanohashi, X. Fengjuan, I. Sanokawa and M. Iino, Fuel, 79, 955 (2000).

    Article  CAS  Google Scholar 

  8. V. Zubkova and A. Strojwas, Energy Source. Part A, 34, 609 (2012).

    Article  CAS  Google Scholar 

  9. C. P. Painter, Energy Fuels, 4, 379 (1990).

    Article  CAS  Google Scholar 

  10. C. P. Painter, J. Graf and M.M. Coleman, Energy Fuels, 4, 393 (1990).

    Article  CAS  Google Scholar 

  11. T. Aida and T.G. Squires, Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., 30, 95 (1985).

    CAS  Google Scholar 

  12. L. Chen, J. L. Yang and M. X. Liu, Ind. Eng. Chem. Res., 50, 2562 (2011).

    Article  CAS  Google Scholar 

  13. S. T. Hsieh and J. L. Duda, Fuel, 66, 170 (1987).

    Article  CAS  Google Scholar 

  14. J.R. Nelson, O. P. Mahajan and P. L. Walker, Fuel, 59, 831 (1980).

    Article  CAS  Google Scholar 

  15. H. Gao, L. Artok, K. Kidena, S. Murata, M. Miura and M. Nomura, Energy Fuels, 12, 881 (1998).

    Article  CAS  Google Scholar 

  16. D.V. Niekerk, P.M. Halleck and J.P. Mathews, Fuel, 89, 19 (2010).

    Article  Google Scholar 

  17. G.D. Cody, J.W. Larsen and M. Siskin, Energy Fuels, 2, 340 (1988).

    Article  CAS  Google Scholar 

  18. B. Ambedkar, R. Nagarajan and S. Jayanti, Ultrason. Sonochem., 18, 718 (2011).

    Article  CAS  Google Scholar 

  19. W. C. Xia, J. G. Yang and C. Liang, Powder Technol., 237, 1 (2013).

    Article  CAS  Google Scholar 

  20. K.W. Ze, X. H. Xin and C. J. Tao, J. Chin. Univ. Min. Technol., 17, 358 (2007).

    Article  Google Scholar 

  21. J. Garcia-Noguera, F. I. P. Oliveira, M. I. Gallão, C. L. Weller, S. Rodrigues and F. A.N. Fernandes, Dry. Technol., 28, 294 (2010).

    Article  Google Scholar 

  22. K. Kidena, S. Murata and M. Nomura, Fuel Process. Technol., 89, 424 (2008).

    Article  CAS  Google Scholar 

  23. P. L. Ritger and N. A. Peppas, Fuel, 66, 815 (1987).

    Article  CAS  Google Scholar 

  24. F. E. Ndaji and K. M. Thomas, Fuel, 72, 1525 (1993).

    Article  CAS  Google Scholar 

  25. F. E. Ndaji and K. M. Thomas, Fuel, 72, 1531 (1993).

    Article  CAS  Google Scholar 

  26. Y. Otake and E. M. Suuberg, Energy Fuels, 11, 1155 (1997).

    Article  CAS  Google Scholar 

  27. M.V. Kondrin, E. L. Gromnitskaya, A. A. Pronin, A. G. Lyapin, V.V. Brazhkin and A.A. Volkov, J. Chem. Phys., 137, 084502 (2012).

    Article  CAS  Google Scholar 

  28. J. B. Milligan, K.M. Thomas and J.C. Crelling, Energy Fuels, 11, 364 (1997).

    Article  CAS  Google Scholar 

  29. S. Mazumder, F. Vermolen and J. Bruining, SPE J., 16, 856 (2011).

    Article  CAS  Google Scholar 

  30. M. A. Margulis, Ultrason. Sonochem., 1, 87 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Z., Mi, J., Kang, J. et al. Kinetics and activation energy of solvent swelling of coal altered by an ultrasonication-enhanced process. Korean J. Chem. Eng. 32, 74–78 (2015). https://doi.org/10.1007/s11814-014-0189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0189-x

Keywords

Navigation