Skip to main content

Analysis of hybrid membrane and chemical absorption systems for CO2 capture


Amine-based absorption of CO2 is currently the industry standard technology for capturing CO2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO2 capture. In particular we looked at the CO2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate.

This is a preview of subscription content, access via your institution.


  1. S. Freguia and G. T. Rochelle, AIChE J., 49, 1676 (2003).

    Article  CAS  Google Scholar 

  2. H. Chang and C. M. Shih, Sep. Sci. Technol., 40, 877 (2005).

    Article  CAS  Google Scholar 

  3. F. A. Tobiesen, H. F. Svendsen and O. Juliussen, AIChE J., 53, 846 (2007).

    Article  CAS  Google Scholar 

  4. P. Mores, N. Scenna and S. Mussati, Chem. Eng. Res. Des., 89, 1587 (2011).

    Article  CAS  Google Scholar 

  5. T. Neveux, Y. L. Moullec, J. P. Corriou and E. Favre, Ind. Eng. Chem. Res., 52, 4266 (2013).

    Article  CAS  Google Scholar 

  6. T. C. Merkel, H. Lin, X. Wei and R. Baker, J. Membr. Sci., 359, 126 (2010).

    Article  CAS  Google Scholar 

  7. H. Zhai and E. S. Rubin, Environ. Sci. Technol., 47, 3006 (2013).

    Article  CAS  Google Scholar 

  8. P. Shao, M.M. Dal-Cin, M.D. Guiver and A. Kumar, J. Membr. Sci., 427, 451 (2013).

    Article  CAS  Google Scholar 

  9. D.T. Coker, B. D. Freeman and G.K. Fleming, AIChE J., 44, 1289 (1998).

    Article  CAS  Google Scholar 

  10. T. Katoh, M. Tokumura, H. Yoshikawa and Y. Kawase, Sep. Purif. Technol., 76, 362 (2011).

    Article  CAS  Google Scholar 

  11. D. E. Suk and T. Matsuura, Sep. Sci. Technol., 41, 595 (2006).

    Article  Google Scholar 

  12. B.D. Bhide, A. Voskericyan and S. A. Stern, J. Membr. Sci., 140, 27 (1998).

    Article  CAS  Google Scholar 

  13. B. Belaissaoui, Y. L. Moullec, D. Willson and E. Favre, J. Membr. Sci., 415–416, 424 (2012).

    Article  Google Scholar 

  14. M. Scholz, B. Frank, F. Stockmeier, S. Falb and M. Wessling, Ind. Eng. Chem. Res., 52, 16929 (2013).

    Article  CAS  Google Scholar 

  15. C. Y. Pan, AIChE J., 32, 2020 (1986).

    Article  CAS  Google Scholar 

  16. J. L. Bravo, J.A. Rocha and J. R. Fair, Hydrocarbon Process., 64, 91 (1985).

    CAS  Google Scholar 

  17. G. F. Versteeg, L. A. J. Van Dijck and W. P. M. Van Swaaij, Chem. Eng. Commun., 144, 113 (1996).

    Article  CAS  Google Scholar 

  18. S. Lee, S. Maken, J.W. Park, H. J. Song, J. J. Park, J. G. Shin J.H. Kim and H. M. Eum, Fuel, 87, 1734 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jin-Kuk Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Binns, M., Oh, SY., Kwak, DH. et al. Analysis of hybrid membrane and chemical absorption systems for CO2 capture. Korean J. Chem. Eng. 32, 383–389 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Membrane Separation
  • Chemical Absorption
  • CO2 Capture
  • Process Design
  • Hybrid Separation