Skip to main content
Log in

Development of electrolyte SAFT-HR equation of state for single electrolyte solutions

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The explicit version of the mean spherical approximation (MSA) is added to the SAFT-HR equation of state (EoS) to model aqueous alkali halide solutions. The proposed electrolyte equation of state (eEoS) has two parameters per each ion. Two methods are in common use for calculating ion parameters: ion-based and salt-based. In this work, the electrolyte parameters are obtained for 61 single electrolyte solutions using salt-based method. Using this approach, mean ionic activity coefficients of the 61 aqueous electrolyte systems were modeled with overall average absolute relative percent deviation (AAD%) of 3.91. Also, for testing the ability of the model in terms of ionic parameters, six salts (NaCl, NaBr, NaI, KCl, KBr and KI) were studied using ion-based method. The liquid densities, osmotic coefficients and salt mean ionic activity coefficients of 6 aqueous electrolyte solutions were modeled with overall AAD% of 0.68, 2.28 and 0.96, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Prausnitz, R. Lichtenthaler and E. de Azevedo, Molecular thermodynamics of fluid-phase equilibria (3rd Ed.), Prentice Hall (1998).

    Google Scholar 

  2. G. M. Kontogeorgis and G. K. Folas, Thermodynamic models for industrial applications, John Wiley & Sons, Ltd. (2009).

    Google Scholar 

  3. L. Blum, Mol. Phys., 30, 1529 (1975).

    Article  CAS  Google Scholar 

  4. L. Blum, J. Stat. Phys., 18, 451 (1978).

    Article  Google Scholar 

  5. S. P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 47, 8063 (2008).

    Article  CAS  Google Scholar 

  6. A. Haghtalab and S. H. Mazloumi, Fluid Phase Equilib., 285, 96 (2009).

    Article  CAS  Google Scholar 

  7. C.-C. Chen and L. B. Evans, AIChE J., 32, 444 (1986).

    Article  CAS  Google Scholar 

  8. K. S. Pitzer, Activity coefficients in electrolyte solutions, (2nd Ed.), CRC Press (1991).

    Google Scholar 

  9. A. Haghtalab and J. H. Vera, AIChE J., 34, 803 (1988).

    Article  CAS  Google Scholar 

  10. H. Planche and H. Renon, The J. Phys. Chem., 85, 3924 (1981).

    Article  CAS  Google Scholar 

  11. J.A. Myers, S. I. Sandler and R. H. Wood, Ind. Eng. Chem. Res., 41, 3282 (2002).

    Article  CAS  Google Scholar 

  12. M. A. Clarke and P. R. Bishnoi, Fluid Phase Equilib., 220, 21 (2004).

    Article  CAS  Google Scholar 

  13. A. Haghtalab and S. H. Mazloumi, Fluid Phase Equilib., 280, 1 (2009).

    Article  CAS  Google Scholar 

  14. W.G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Fluid Phase Equilib., 52, 31 (1989).

    Article  CAS  Google Scholar 

  15. A. Galindo, A. Gil-Villegas, G. Jackson and A. N. Burgess, J. Phys. Chem. B, 103, 10272 (1999).

    Article  CAS  Google Scholar 

  16. A. Gil-Villegas, A. Galindo and G. Jackson, Mol. Phys., 99, 531 (2001).

    Article  CAS  Google Scholar 

  17. S. P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 44, 4442 (2005).

    Article  CAS  Google Scholar 

  18. H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 37, 4453 (1998).

    Article  CAS  Google Scholar 

  19. X. Ji, S. P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 44, 7584 (2005).

    Article  CAS  Google Scholar 

  20. S. P. Tan, X. Ji, H. Adidharma and M. Radosz, J. Phys. Chem. B, 110, 16694 (2006).

    Article  CAS  Google Scholar 

  21. X. Ji, S. P. Tan, H. Adidharma and M. Radosz, J. Phys. Chem. B, 110, 16700 (2006).

    Article  CAS  Google Scholar 

  22. Z. Liu, W. Wang and Y. Li, Fluid Phase Equilib., 227, 147 (2005).

    Article  CAS  Google Scholar 

  23. W.G. Chapman, K.E. Gubbins, G. Jackson and M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990).

    Article  CAS  Google Scholar 

  24. B. Behzadi, B. H. Patel, A. Galindo and C. Ghotbi, Fluid Phase Equilib., 236, 241 (2005).

    Article  CAS  Google Scholar 

  25. H. Zhao, M. C. dos Ramos and C. McCabe, J. Chem. Phys., 126 (2007).

    Google Scholar 

  26. H. Zhao and C. McCabe, J. Chem. Phys., 125 (2006).

    Google Scholar 

  27. C. Held, L. F. Cameretti and G. Sadowski, Fluid Phase Equilib., 270, 87 (2008).

    Article  CAS  Google Scholar 

  28. L. F. Cameretti, G. Sadowski and J. M. Mollerup, Ind. Eng. Chem. Res., 44, 3355 (2005).

    Article  CAS  Google Scholar 

  29. S. Herzog, J. Gross and W. Arlt, Fluid Phase Equilib., 297, 23 (2010).

    Article  CAS  Google Scholar 

  30. R. Shahriari, M. R. Dehghani and B. Behzadi, Ind. Eng. Chem. Res., 51, 10274 (2012).

    Article  CAS  Google Scholar 

  31. S.H. Huang and M. Radosz, Ind. Eng. Chem. Res., 29, 2284 (1990).

    Article  CAS  Google Scholar 

  32. S.H. Huang and M. Radosz, Ind. Eng. Chem. Res., 30, 1994 (1991).

    Article  CAS  Google Scholar 

  33. M. S. Wertheim, J. Stat. Phys., 35, 19 (1984).

    Article  Google Scholar 

  34. M. S. Wertheim, J. Stat. Phys., 35, 35 (1984).

    Article  Google Scholar 

  35. M. S. Wertheim, J. Stat. Phys., 42, 459 (1986).

    Article  Google Scholar 

  36. A. H. Harvey, T.W. Copeman and J.M. Prausnitz, J. Phys. Chem., 92, 6432 (1988).

    Article  CAS  Google Scholar 

  37. A. A. Maryott and E. R. Smith, Table of dielectric constants of pure liquids, NBSCircular 514, U.S. Government Printing Office, Washington, DC (1951).

    Google Scholar 

  38. M. Valavi, M. R. Dehghani and R. Shahriari, Fluid Phase Equilib., 344, 92 (2013).

    Article  CAS  Google Scholar 

  39. W.-B. Liu, Y.-G. Li and J.-F. Lu, Ind. Eng. Chem. Res., 37, 4183 (1998).

    Article  CAS  Google Scholar 

  40. J.-F. Lu, Y.-X. Yu and Y.-G. Li, Fluid Phase Equilib., 85, 81 (1993).

    Article  CAS  Google Scholar 

  41. Y. Li, Tsinghua Science and Technology, 9, 444 (2004).

    CAS  Google Scholar 

  42. Y. Li, Tsinghua Science and Technology, 11, 181 (2006).

    Article  CAS  Google Scholar 

  43. L. L. Lee, The J. Chem. Phys., 78, 5270 (1983).

    Article  CAS  Google Scholar 

  44. R. A. Robinson and R. H. Stokes, Electrolyte solutions, Dover Publications (2002).

    Google Scholar 

  45. R. A. Robinson and H. S. Harned, Chem. Rev., 28, 419 (1941).

    Article  CAS  Google Scholar 

  46. P. Novotny and O. Sohnel, J. Chem. Eng. Data, 33, 49 (1988).

    Article  CAS  Google Scholar 

  47. J.C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, SIAM J. on Optimization, 9, 112 (1998).

    Article  Google Scholar 

  48. X. Ji and H. Adidharma, Ind. Eng. Chem. Res., 46, 4667 (2007).

    Article  CAS  Google Scholar 

  49. S. S. Chen and A. Kreglewski, Berichte der Bunsengesellschaft für physikalische Chemie, 81, 1048 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Feyzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafloo, A., Feyzi, F. & Zoghi, A.T. Development of electrolyte SAFT-HR equation of state for single electrolyte solutions. Korean J. Chem. Eng. 31, 2251–2260 (2014). https://doi.org/10.1007/s11814-014-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0185-1

Keywords

Navigation