Skip to main content

Advertisement

Log in

Excess properties and viscous flow thermodynamics of the binary system 1,2-ethanediamine+triethylene glycol at T=(298.15, 303.15, 308.15, and 313.15) K for CO2 capture

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Liquid densities and viscosities are reported for the binary system of 1,2-ethanediamine (EDA)+triethylene glycol (TEG) at T=(298.15, 303.15, 308.15, and 313.15) K. Densities were measured using a capillary pycnometer and viscosities were determined using an Ubbelohde capillary viscometer. The experimental results are compared with data published in the literatures. Based on the density data and kinematic viscosity data, excess molar volumes (V E m ) and deviation in kinematic viscosity (Δν) were calculated and the calculated results were fitted to a Redlich-Kister equation to obtain the coefficients and estimate the standard deviations between the experimental and calculated quantities. The values of V E m are negative in the whole composition range, whereas the values of Δν are positive over the major composition range. From kinematic viscosity data, Gibbs energies of activation of viscous flow (ΔG*), enthalpy of activation for viscous flow (ΔH*), and entropy of activation for the viscous flow (ΔS*) were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Luis, T.V. Gerven and B.V. Bruggen, Prog. Energy Combust. Sci., 38, 419 (2012).

    Article  CAS  Google Scholar 

  2. J. Koornneef, A. Ramirez and T. Harmelen, Atmos. Environ., 44, 1369 (2010).

    Article  CAS  Google Scholar 

  3. C. F. Song and Y. Kitamura, Int. J. Greenh. Gas Con., 7, 107 (2012).

    Article  CAS  Google Scholar 

  4. J. Ida and Y. S. Lin, Environ. Sci. Technol., 37, 1999 (2003).

    Article  CAS  Google Scholar 

  5. E. Aívarez, F. Cerdeira, D. Gómez-Diaz and J. M. Navaza, J. Chem. Eng. Data, 55, 994 (2010).

    Article  Google Scholar 

  6. B. Han, Y. B. Sun, M. H. Fan and H. S. Cheng, J. Phys. Chem. B, 117, 5971 (2013).

    Article  CAS  Google Scholar 

  7. R. Hiwale, S. Hwang and R. Smith, Ind. Eng. Chem. Res., 51, 4328 (2012).

    Article  CAS  Google Scholar 

  8. D. Bonenfant, M. Mimeault and R. Hausler, Ind. Eng. Chem. Res., 42, 3179 (2003).

    Article  CAS  Google Scholar 

  9. D. Camper, J. E. Bara, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res., 47, 8496 (2008).

    Article  CAS  Google Scholar 

  10. S.Y. Park, K. B. Yi, C.H. Ko, J.-H. Park, J. Kim and W. H. Hong, Energy Fuel, 24, 3704 (2010).

    Article  CAS  Google Scholar 

  11. G. N. Patil, P. D. Vaidya and E.Y. Kenig, Ind. Eng. Chem. Res., 51, 1592 (2012).

    Article  CAS  Google Scholar 

  12. E. Sada, H. Kumazawa and M. A. Butt, Chem. Eng. J., 13, 213 (1977).

    Article  CAS  Google Scholar 

  13. A. Nuchitprasittichai and S. Cremaschi, Int. J. Greenh. Gas Con., 13, 34 (2013).

    Article  CAS  Google Scholar 

  14. Z. H. Guo, J. B. Zhang, T. Zhang, C. P. Li, Y. F. Zhang and J. Bai, J. Mol. Liq., 165, 27 (2012).

    Article  CAS  Google Scholar 

  15. W. Afzal, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 54, 1254 (2009).

    Article  CAS  Google Scholar 

  16. A. Valtz, M. Teodorescu, I. Wichterle and D. Richon, Fluid Phase Equilib., 215, 129 (2004).

    Article  CAS  Google Scholar 

  17. C. P. Li, J. B. Zhang, T. Zhang, X. H. Wei, E. Q. Zhang, N. Yang, N. N. Zhao, M. Su and H. Zhou, J. Chem. Eng. Data, 55, 4104 (2010).

    Article  CAS  Google Scholar 

  18. J. K. Gladden, J. Chem. Eng. Data, 17, 468 (1972).

    Article  CAS  Google Scholar 

  19. M. A. Saleh, S. Akhtar and S. Ahmed, J. Mol. Liq., 116, 147 (2005).

    Article  CAS  Google Scholar 

  20. J. Ortega, J. Indian Chem. Soc., LXIII, 961 (1986).

    Google Scholar 

  21. B. Vijaya Kumar Naidu, K. Chowdoji Rao and M. C. S. Subha, J. Chem. Eng. Data, 48, 625 (2003).

    Article  Google Scholar 

  22. C. Castellari, J. Chem. Eng. Data, 51, 599 (2006).

    Article  CAS  Google Scholar 

  23. A. Kumagai, H. Mochida and S. Takahashi, Int. J. Thermophys., 14, 45 (1993).

    Article  CAS  Google Scholar 

  24. N.V. Sastry, R.R. Thakor and M. C. Patel, Int. J. Thermophys., 29, 610 (2008).

    Article  CAS  Google Scholar 

  25. N.V. Sastry and M.C. Patel, J. Chem. Eng. Data, 48, 1019 (2003).

    Article  CAS  Google Scholar 

  26. F. Han, J. Zhang, G. Chen and X. Wei, J. Chem. Eng. Data, 53, 2598 (2008).

    Article  CAS  Google Scholar 

  27. U. R. Kapadi, D.G. Hundiwale, N.B. Patil and M.K. Lande, Fluid Phase Equilib., 25, 267 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zhang, J., Li, Q. et al. Excess properties and viscous flow thermodynamics of the binary system 1,2-ethanediamine+triethylene glycol at T=(298.15, 303.15, 308.15, and 313.15) K for CO2 capture. Korean J. Chem. Eng. 31, 2245–2250 (2014). https://doi.org/10.1007/s11814-014-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0184-2

Keywords

Navigation