Skip to main content
Log in

Comparison of spontaneous combustion susceptibility of coal dried by different processes from low-rank coal

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We compared the susceptibility to spontaneous combustion of low-rank coals dried by four different processes: flash drying, fluidized bed drying, non-fried carbon briquetting, and coal-oil slurry dewatering. The coals were characterized by FT-IR and XPS analysis. A crossing-point temperature (CPT) was estimated as a comparison criterion of the susceptibility of the coals to spontaneous combustion. O2, CO, and CO2 emissions during the CPT measurement were also compared. The FT-IR and XPS analysis revealed that some of the oxygen functional groups on the surface of the coal were removed when the coal underwent the drying process. This phenomenon was particularly noticeable in the coal dried by oil. Accordingly, the CPT of the coal that went through this drying process was high. Among the samples, the coals dried by oil showed the highest CPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Mangena, G. J. Korte, R. I. McCrindle and D. L. Morgan, Fuel Process. Technol., 85, 1647 (2004).

    Article  CAS  Google Scholar 

  2. C. Keith, 2nd Coaltrans Upgrading Coal Forum, Jakarta, Indonesia, September (2010).

    Google Scholar 

  3. N. Sarunac, M. Ness and C. Bullinger, Third international conference on clean coal technologies for our future, Sardinia, Italy, May (2007).

    Google Scholar 

  4. C. Bullinger, M. Ness, N. Sarunac and J. C. Kennedy, Power Eng., 114, 64 (2010).

    Google Scholar 

  5. H. J. Klutz, K. J. Klöcker and J. Lambertz, VGB PowerTech, 76, 210 (1996).

    Google Scholar 

  6. H. J. Klutz, http://www.rwe.com/web/cms/mediablob/en/606202/data/88182/2/rwe/innovation/projects-technologies/power-generation/fossil-fired-power-plants/fluidized-bed-drying/Developmentstatus- of-WTA-fluidized-bed-drying-for-lignite-at-RWE-Power-AG-Article-taken-from-Kraftwerkstechnik-Sichere-und-nachhaltige-Energieversorgung-Volume-2-.pdf.

  7. S. Sugita, T. Deguchi and T. Shigehisa, Kobe Steel Eng. Reports, 53, 41 (2003).

    CAS  Google Scholar 

  8. D. F. Umar, H. Usui and B. Daulay, Fuel Process. Technol., 87, 1007 (2006).

    Article  CAS  Google Scholar 

  9. S. Kinoshita, S. Yamamoto, T. Deguchi and T. Shigehisa, Kobelco Technol. Review, 29, 93 (2010).

    Google Scholar 

  10. H. K. Choi, C. Thiruppathiraja, S. D. Kim, Y. J. Rhim, J. H. Lim and S. H. Lee, Fuel Process. Technol., 92, 2005 (2011).

    Article  CAS  Google Scholar 

  11. J. J. Pis, G. de la Puente, E. Fuente, A. Moran and F. Rubiera, Thermochim. Acta, 279, 93 (1996).

    Article  CAS  Google Scholar 

  12. B. B. Beamish, M. A. Barakat and J. D. St George, Thermochim. Acta, 362, 79 (2000).

    Article  CAS  Google Scholar 

  13. B. B. Beamish, Int. J. Coal Geology, 64, 139 (2005).

    Article  CAS  Google Scholar 

  14. A. L. McCutcheon and M.A. Wilson, Energy Fuels, 17, 929 (2003).

    Article  CAS  Google Scholar 

  15. C.G. Silva Filho and F. E. Milioli, Quimica Nova, 31, 98 (2008).

    Article  Google Scholar 

  16. M. Itay, C. R. Hill and D. A. Glasser, Fuel Process. Technol., 21, 81 (1989).

    Article  CAS  Google Scholar 

  17. H. Wang, B. Z. Dlugogorski and E.M. Kennedy, Fuel, 81, 1913 (2002).

    Article  CAS  Google Scholar 

  18. H. Wang, B. Z. Dlugogorski and E.M. Kennedy, Prog. Energy Combust. Sci., 29, 487 (2003).

    Article  CAS  Google Scholar 

  19. H. Wang, B. Z. Dlugogorski and E.M. Kennedy, Combust. Flame, 134, 107 (2003).

    Article  CAS  Google Scholar 

  20. X. Qi, D. Wang, J. A. Milke and X. Zhong, Int. J. Mining Sci. Technol., 22, 169 (2012).

    Article  CAS  Google Scholar 

  21. A. Kucuk, Y. Kadioglu and M. S. Gulaboglu, Combust. Flame, 133, 255 (2003).

    Article  CAS  Google Scholar 

  22. P. Behera and G. Mohanty, J. Sci. Res., 1, 55 (2009).

    CAS  Google Scholar 

  23. Q. Xuyao, D. M. Wang, J. A. Milke and X. X Zhong, Mining Sci. Technol., 21, 255 (2011).

    Google Scholar 

  24. W. T. Jo, H. K. Choi, S. D. Kim, J. H. Yoo, D. H. Chun, Y. J. Rhim, J. H. Lim and S. H. Lee, Korean J. Chem. Eng., 30, 1034 (2013).

    Article  CAS  Google Scholar 

  25. S.D. Kim, S. H. Lee, Y. J. Rhim, H. K. Choi, J.H. Lim, D.H. Chun and J. H. Yoo, Korean Chem. Eng. Res., 50, 106 (2012).

    Article  CAS  Google Scholar 

  26. J.H. Park, D.W. Shun, D.H. Bae, S. H. Lee, J. H. Seo and J. H. Park, 27 th International Pittsburgh Coal Conference, Istanbul, Turkey, October (2010).

    Google Scholar 

  27. S. H. Moon, Y.W. Kim, I. S. Ryu and S. J. Lee, J. Energy Eng., 18, 213 (2009).

    Google Scholar 

  28. M. Karthikeyan, Drying Technol., 26, 948 (2008).

    Article  CAS  Google Scholar 

  29. B. Wu, H. Hu, Y. Zhao, L. Jin and Y. Fang, J. Fuel Chem. Technol., 37, 385 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hokyung Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Jo, W., Kim, S. et al. Comparison of spontaneous combustion susceptibility of coal dried by different processes from low-rank coal. Korean J. Chem. Eng. 31, 2151–2156 (2014). https://doi.org/10.1007/s11814-014-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0174-4

Keywords

Navigation