Skip to main content
Log in

Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Researchers have focused on improving the performance of polymeric membranes through various methods, such as adding inorganic nanoparticles into the matrix of the membranes. In the present study, the separation of oxygen, nitrogen, methane and carbon dioxide gases by PVC/silica nanocomposite membranes was investigated. Silica nanoparticles were prepared via sol-gel method. Membranes were prepared by thermal phase inversion method and characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetry (TGA) analyses. The FTIR and SEM analyses demonstrated a nano-scale dispersion and good distribution of silica particles in the polymer matrix. According to TGA results, thermal properties of PVC membranes were improved and DSC analysis showed that glass transition temperature of nanocomposite membranes increased by adding silica particles. We concluded that the permeability of carbon dioxide and oxygen increased significantly (about two times) in the composite PVC/silica membrane (containing 30 wt% silica particles), while that of nitrogen and methane increased only 40 to 60 percent. Introducing 30 wt% silica nanoparticles into the PVC matrix, increased the selectivity of CO2/CH4 and CO2/N2 from 15.9 and 21 to 18.2 and 27.3, respectively. The diffusion and solubility coefficients were determined by the time lag method. Increasing the silica mass fraction in the membrane increased the diffusion coefficients of gases considered in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Javaid, Chem. Eng. J., 112, 219 (2005).

    Article  CAS  Google Scholar 

  2. L.M. Robeson, J. Membr. Sci., 320, 390 (2008).

    Article  CAS  Google Scholar 

  3. K. Bierbrauer, M. L. Gonzalez, E. Riande and C. Mijangos, J. Membr. Sci., 362, 164 (2010).

    Article  CAS  Google Scholar 

  4. P. Tiemblo, J. Guzmn, Riande, C. Mijangos and H. Reinecke, Polymer, 42, 4817 (2001).

    Article  CAS  Google Scholar 

  5. P. Tiemblo, J. Guzmn, E. Riande, C. Mijangos and H. Reinecke, Macromolecules, 35, 420 (2002).

    Article  CAS  Google Scholar 

  6. P. Tiemblo, J. Guzmn, E. Riande, C. Mijangos, M. Herrero, J. Espeso and H. Reinecke, J. Polym. Sci., Part B: Polym. Phys., 40, 964 (2002).

    Article  CAS  Google Scholar 

  7. M. Sadeghi, M. Pourafshari Chenar, S. Moradi and M. Rahimian, J. Appl. Polym. Sci., 110, 1093 (2008).

    Article  CAS  Google Scholar 

  8. C. A. Jones, S. A. Gordeyev and S. J. Shilton, Polymer, 52, 901, (2011).

    Article  CAS  Google Scholar 

  9. A. Jomekian, S. A. A. Mansoori, N. Monirimanesh and A. Shafiee, Korean J. Chem. Eng., 28, 2069 (2011).

    Article  CAS  Google Scholar 

  10. A. Laeeq Khan, C. Klaysom, A. Gahlaut, A. Ullah Khan and F. J. Vankelecom, J. Membr. Sci., 447, 73 (2013).

    Article  CAS  Google Scholar 

  11. H. Cong, M. Radosz, B. F. Towler and Y. Shen, Sep. Purif. Technol., 55, 281 (2007).

    Article  CAS  Google Scholar 

  12. Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang and W. Xin, Desalination, 146, 49 (2002).

    Article  CAS  Google Scholar 

  13. S. S. Hosseini, Y. Li, T. S. Chung and Y. Liu, J. Membr. Sci., 302, 207 (2007).

    Article  CAS  Google Scholar 

  14. M. Sadeghi, G. Khanbabaei, A. H. Saeedi Dehaghani, M. Sadeghi, M. A. Aravand, M. Akbarzade and S. Khatti, J. Membr. Sci., 322, 423 (2008).

    Article  CAS  Google Scholar 

  15. J. Ahn, W. Chung, I. Pinnau and M. D. Guiver, J. Membr. Sci., 314, 123 (2008).

    Article  CAS  Google Scholar 

  16. M. Sadeghi, M. A. Semsarzadeh, M. Barikani and M. Pourafshari Chenar, J. Membr. Sci., 376, 188 (2011).

    Article  CAS  Google Scholar 

  17. D.G. Pye, H. H. Hoehn and M. Panar, J. Appl. Polym. Sci., 20, 1921 (1976).

    Article  CAS  Google Scholar 

  18. M. Naghsh, M. Sadeghi, Moheb A, Pourafshari Chenar M and M. Mohagheghian, J. Membr. Sci., 423, 97 (2012).

    Article  Google Scholar 

  19. S. M. Park, Y.W. Choi, T. H. Yang, J. S. Park and S. H. Kim, Korean J. Chem. Eng., 30, 87 (2013).

    Article  CAS  Google Scholar 

  20. K. C. O’Brien, W. J. Koros, T. A. Barbari and E. S. Sanders, J. Membr. Sci., 29, 229 (1986).

    Article  Google Scholar 

  21. D. Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211, 311 (2003).

    Article  CAS  Google Scholar 

  22. M.M. Talakesh, M. Sadeghi, M. Pourafshari Chenar and A. Khosravi, J. Membr. Sci., 415, 469 (2012).

    Article  Google Scholar 

  23. E. Kucukpinar and P. Doruker, Polymer, 44, 3607 (2003).

    Article  CAS  Google Scholar 

  24. N. Hu and J. R. Fried, Polymer, 46, 4330 (2005).

    Article  CAS  Google Scholar 

  25. I.G. Economou, V. E. Raptis, V. S. Melissas, D. N. Theodorou, J. Petrou and J. H. Petropoulos, Fluid Phase Equilib., 228, 15 (2005).

    Article  Google Scholar 

  26. E. Farno, A. Ghadimi, N. Kasiri and T. Mohammadi, Sep. Purif. Technol., 81, 400 (2011).

    Article  CAS  Google Scholar 

  27. M. Sadeghi, M. M. Talakesh, B. Ghalei and M. R. Shafiei, J. Membr. Sci., 427, 21 (2013).

    Article  CAS  Google Scholar 

  28. G. Lei, Z. Zhu and V. Rudolph, Sep. Purif. Technol., 78, 76 (2011).

    Article  Google Scholar 

  29. M. Pakizeh, A. N. Moghadam, M. R. Omidkhah and M. Namvar-Mahboub, Korean J. Chem. Eng., 30, 751 (2013).

    Article  CAS  Google Scholar 

  30. J. Albo, H. Hagiwara, H. Yanagishita, K. Ito and T. Tsuru, Ind. Eng. Chem. Res., 53, 1442 (2014).

    Article  CAS  Google Scholar 

  31. L.M. Robeson, J. Membr. Sci., 320, 340 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohagheghian, M., Sadeghi, M., Chenar, M.P. et al. Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane. Korean J. Chem. Eng. 31, 2041–2050 (2014). https://doi.org/10.1007/s11814-014-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0169-1

Keywords

Navigation