Skip to main content

Advertisement

Log in

Modeling and analysis of a syngas cooler with concentric evaporator channels in a coal gasification process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Coal gasification offers a flexible and efficient conversion of the solid fuel into CO- and H2-rich synthetic gas (syngas) for production of various chemicals and energy products. Since the hot syngas leaving a gasifier contains various impurities such as acidic gases and particulates, it needs to be cooled down for cleaning prior to conversion into the final product. A dedicated heat exchanger called a syngas cooler (SGC) is used to lower the gas temperature while recovering the thermal energy. This study investigated the heat transfer characteristics in a commercial-scale SGC consisting of a series of concentric helical coil channels. First, the detailed flow and heat transfer pattern in the unique heat exchanger were analyzed using computational fluid dynamics (CFD) for various operating loads and fouling conditions. The predicted heat transfer rate was used to derive correlations for Nusselt number for the channel sections of the SGC. Second, a one-dimensional model of the equipment was proposed for fast-response process simulations. In terms of heat transfer rate and gas temperature, the process model showed a reasonable accuracy compared to the CFD results for the tested cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Park, D. Shin, G. Lee and E. S. Yoon, Korean J. Chem. Eng., 29, 1129 (2012).

    Article  CAS  Google Scholar 

  2. C. Higman, State of the gasification industry-the updated worldwide gasification database, Gasification Technologies Conf., Colorado Springs, CO, USA, Oct. 16 (2013).

    Google Scholar 

  3. R. Fernando, Coal gasification, CCC/140, IEA Clean Coal Centre (2008).

    Google Scholar 

  4. J. Ni, G. Yu, Q. Guo, Q. Liang and Z. Zhou, Ind. Eng. Chem. Res., 49, 4452 (2010).

    Article  CAS  Google Scholar 

  5. J. Ni, G. Yu, Q. Guo, Z. Dai and F. Wang, Chem. Eng. Sci., 66, 448 (2011).

    Article  CAS  Google Scholar 

  6. E. Martelli, T. Kreutz, M. Carbo, S. Consonni and D. Jansen, Appl. Energy, 88, 3978 (2011).

    Article  CAS  Google Scholar 

  7. Z. Yang, Y. Liu and Z. Cao, Int. J. Chem. React. Eng., 9, A85 (2011).

    Google Scholar 

  8. C. Higman and M. van der Burgt, Gasification, 2nd Ed., Gulf Professional Publishing, Oxford, UK (2008).

    Google Scholar 

  9. C. Botero, R. P. Field, R.D. Brasington, H. J. Herzog and A. F. Ghoniem, Ind. Eng. Chem. Res., 51, 11778 (2012).

    Article  CAS  Google Scholar 

  10. G. Yu, J. Ni, Q. Liang, Q. Guo and Z. Zhou, Ind. Eng. Chem. Res., 48, 10094 (2009).

    Article  CAS  Google Scholar 

  11. I.-S. Ye, S. Park, C. Ryu and S. K. Park, Appl. Therm. Eng., 58, 11 (2013).

    Article  CAS  Google Scholar 

  12. S. Park, I.-S. Ye, J. Oh, C. Ryu and J. H. Koo, Appl. Therm. Eng., Submitted (2014).

    Google Scholar 

  13. V. Gnielinski, Heat transfer and pressure drop in helically coiled tubes, Proc. 8 th Int. Heat Transfer Conf., 6, 2847 (1986).

    Google Scholar 

  14. Z. Yang, Z. Zhao, Y. Liu, Y. Chang and Z. Cao, Exp. Therm. Fluid Sci., 35, 1427 (2011).

    Article  CAS  Google Scholar 

  15. Z. Zhao, X. Wang, D. Che and Z. Cao, Int. Comm. Heat Mass., 38, 1189 (2011).

    Article  CAS  Google Scholar 

  16. A. Zbogar, F. J. Frandsen, P. A. Jensen and P. Glarborg, Prog. Energy Combust. Sci., 31, 371 (2005).

    Article  CAS  Google Scholar 

  17. K. C. Mills and J.M. Rhine, Fuel, 68, 904 (1989).

    Article  CAS  Google Scholar 

  18. T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput. Fluids, 24, 227 (1995).

    Article  Google Scholar 

  19. T. F. Smith, Z. F. Shen and J. N. Friedman, J. Heat Trans., 104, 602 (1982).

    Article  CAS  Google Scholar 

  20. ANSYS Inc., ANSYS FLUENT 13 User’s Guide, Nov., Canonsburg, PA, USA (2010).

    Google Scholar 

  21. B. D. Bowen, M. Fournier and J. R. Grace, Int. J. Heat Mass Trans., 34, 1043 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changkook Ryu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Ye, IS., Park, S. et al. Modeling and analysis of a syngas cooler with concentric evaporator channels in a coal gasification process. Korean J. Chem. Eng. 31, 2136–2144 (2014). https://doi.org/10.1007/s11814-014-0164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0164-6

Keywords

Navigation