Skip to main content
Log in

Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The heterogeneous photo-Fenton like process is a green chemical pathway. It has an edge over conventional Fenton and photo-Fenton processes as it does not require the removal of ferrous/ferric ions in the form of sludge. We prepeared copper pyrovanadate or Volborthite (Cu3V2(OH)2O7∙2H2O) composite photocatalyst by wet chemical method. The photocatalyst was characterized by SEM, XRD, IR, TGA/DSC, EDX and BET. Experiments demonstrated that catalyst could effectively catalyze degradation of neutral red and azure-B in presence of H2O2 in visible light. Moreover, the photo-Fenton-like catalytic activity of Cu3V2(OH)2O7∙2H2O was much higher than CuO and V2O5, when used alone as photocatalyst. The effect of variation of different parameters, i.e., pH, amount of photocatalyst, concentration of dye, amount of H2O2 and light intensity was also investigated. The degradation was well fitted under pseudo-first-order reaction with a rate constant of 2.081×10−4 sec−1 and 3.876×10−4 sec−1 for neutral red and azure-B, respectively. Quality parameters of dye solutions before and after photo-Fenton degradation were also determined. A tentative mechanism involving OH radical as an oxidant has been proposed. The high catalytic activity may be due to the Cu3V2(OH)2O7∙2H2O shell, which not only increased the surface hydroxyl groups, but also enhanced the interfacial electron transfer. The catalyst has been found to possess good recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sahunin, J. Kaewboran and M. Hunsom, Science Asia, 32, 181 (2006).

    Article  CAS  Google Scholar 

  2. U. Pagga and D. Brown, Chemosphere, 15, 479 (1986).

    Article  CAS  Google Scholar 

  3. J. Feng, X. Hu and P. L. Yue, Water Res., 40, 641 (2006).

    Article  CAS  Google Scholar 

  4. R. Ameta, A. Kumar, P. B. Punjabi and S.C. Ameta, in Adavanced Oxidation Processes: Basics and Applications, D. G. Rao, J. A. Byrne, S. Feroz and R. Senthikumar (Eds.), CRC Press, Taylor and Francis, London (2013).

  5. H. Zhang, H. J. Choi, P. Canazo and C. P. Huang, J. Hazard. Mater., 161, 1306 (2009).

    Article  CAS  Google Scholar 

  6. N. Zhu, L. Gu, H. Yuan, Z. Lou, L. Wang and X. Zhang, Water Res., 46, 3859 (2012).

    Article  CAS  Google Scholar 

  7. X. R. Xu, H. B. Li, W. H. Wang and J. D. Gu, Chemosphere, 57, 595 (2004).

    Article  CAS  Google Scholar 

  8. J. Pignatello, E. Oliveros and A. MacKay, Crit. Rev. Environ. Sci. Technol., 36, 1 (2006).

    Article  CAS  Google Scholar 

  9. S.-H. Hong, B.-H. Kwon, J.-K. Lee and I.-K. Kim, Korean J. Chem. Eng., 25, 46 (2008).

    Article  CAS  Google Scholar 

  10. P. Vaishnave, A. Kumar, R. Ameta, P.B. Punjabi and S. C. Ameta, Arab. J. Chem. In Press (2012).

    Google Scholar 

  11. J. X. Chen and L. Z. Zhu, Chemosphere, 65, 1249 (2006).

    Article  CAS  Google Scholar 

  12. C.B. Molina, J. A. Casas, J. A. Zazo and J. J. Rodriguez, Chem. Eng. J., 118, 29 (2006).

    Article  CAS  Google Scholar 

  13. K. M. Parida and A. C. Pradhan, Ind. Eng. Chem. Res., 49, 8310 (2010).

    Article  CAS  Google Scholar 

  14. S. Parra, V. Nadtotechenko, P. Albers and J. Kiwi, J. Phys. Chem. B, 108, 4439 (2004).

    Article  CAS  Google Scholar 

  15. K. Chanderia, S. Kumar, J. Sharma, R. Ameta and P.B. Punjabi, Arab. J. Chem., In Press (2012).

    Google Scholar 

  16. B. N. Kumar, Y. Anjaneyulu and V. Himabindu, J. Chem. Pharm. Res., 3, 718 (2011).

    Google Scholar 

  17. J. Sharma, R. Ameta, V. K. Sharma and P. B. Punjabi, Bull. Catal. Soc. India, 9, 99 (2010).

    Google Scholar 

  18. N. Ameta, J. Sharma, S. Sharma, S. Kumar and P. B. Punjabi, Ind. J. Chem., 51A, 943 (2012).

    CAS  Google Scholar 

  19. B. Iurascu, I. Siminiceanu, D. Vione, M. A. Vicente and A. Gil, Water Res., 43, 1313 (2009).

    Article  CAS  Google Scholar 

  20. A. Mamedov and V. C. Corberan, Appl. Catal. A Gen., 127, 1 (1995).

    Article  CAS  Google Scholar 

  21. F. Magalhaes, M. C. Pereira, S. E. C. Botrel, J. D. Fabris, W. A. Macedo, R. Mendonc, R.M. Lago and L. C. A. Oliveira, Appl. Catal. A Gen., 332, 115 (2007).

    Article  CAS  Google Scholar 

  22. Y. Zhang, X.M. Dou, J. Liu, M. Yang, L. P. Zhang and Y.C. Kamagata, Catal. Today, 126, 387 (2007).

    Article  CAS  Google Scholar 

  23. R. C.C. Costa, M. F. F. Lelis, J.D. Fabris, J. D. Ardisson and L.C.A. Oliveira, J. Hazard. Mater., 129, 171 (2006).

    Article  CAS  Google Scholar 

  24. V. S. Teresa, V.V. Patricia, A. L. Sonia and M. A. F. Gregorio, Catal. Commun., 8, 2037 (2007).

    Article  Google Scholar 

  25. P. Baldrian, V. Merhautova, J. Gabriel, F. Nerud, P. Stopka, M. Hruby and J. B. Milan, Appl. Catal. B Environ., 66, 258 (2006).

    Article  CAS  Google Scholar 

  26. R. Gopinath, A. R. Paital and B. K. Patel, Tetrahedron Lett., 43, 5123 (2002).

    Article  CAS  Google Scholar 

  27. S. Shylesh and A. P. Singh, J. Catal., 228, 333 (2004).

    Article  CAS  Google Scholar 

  28. L. Rout and T. Punniyamurthy, Adv. Synth. Catal., 347, 1958 (2005).

    Article  CAS  Google Scholar 

  29. C. X. Yin and R.G. Finke, J. Am. Chem. Soc., 127, 13988 (2005).

    Article  CAS  Google Scholar 

  30. J. Kasai, Y. Nakagawa, S. Uchida, K. Yamaguchi and N. Mizuno, Chem. Eur. J., 12, 4176 (2006).

    Article  CAS  Google Scholar 

  31. R. Z. Khaliullin, A. T. Bell and M. Head-Gordon, J. Phys. Chem. B., 109, 17984 (2005).

    Article  CAS  Google Scholar 

  32. P. Y. Zavalij, F. Zhano and M. S. Whitingham, Acta Cryst., C53, 1738 (1997).

    Google Scholar 

  33. M. Machida, Y. Miyazaki, Y. Matsunaga and K. Ikeue, Chem. Commun., 47, 9591 (2011).

    Article  CAS  Google Scholar 

  34. P. Kaur, A. Khant and R. C. Khandelwal, Int. J. Chem. Sci., 9, 980 (2011).

    CAS  Google Scholar 

  35. D. Sharma, A. Bansal, R. Ameta and H. S. Sharma, Int. J. Chem. Technol. Res., 3, 1008 (2011).

    CAS  Google Scholar 

  36. B. Pare, V. Singh and S. B. Jonnalagadda, Ind. J. Chem., 50A, 1061 (2011).

    CAS  Google Scholar 

  37. E. Rosales, M. Pazos, M. A. Sanromán and T. Tavares, Desalination, 284, 150 (2012).

    Article  CAS  Google Scholar 

  38. Y. Jhala, A. K. Chittora, K. L. Ameta and P. B. Punjabi, Int. J. Chem. Sci., 8, 1389 (2010).

    CAS  Google Scholar 

  39. B. Pare, P. Singh and S.B. Jonnalagadda, Ind. J. Chem. Technol., 17, 391 (2010).

    CAS  Google Scholar 

  40. N. Ameta, S. Kalal, R. Ameta, A. K. Chittora and P. B. Punjabi, Int. J. Chem., 1, 337 (2012).

    CAS  Google Scholar 

  41. T. Zhang, C. Li, J. Ma, H. Tian and Z. Qiang, Appl. Catal. B: Environ., 82, 131 (2008).

    Article  CAS  Google Scholar 

  42. S. Xing, C. Hu, J. Qu, H. He and M. Yang, Environ. Sci. Technol., 42, 3363 (2008).

    Article  CAS  Google Scholar 

  43. Y. E. Zeng, H. S. Zhang and Z. H. Chen, Handbook of Organic Reagents, Chemical Industry Press, Beijing, 4, 793 (1989).

    Google Scholar 

  44. E. Tuite and J.M. Kelly, Biopolymers, 35, 419 (1995).

    Article  CAS  Google Scholar 

  45. B. K. Hordern, M. Ziołek and J. Nawrocki, Appl. Catal. B: Environ., 46, 639 (2003).

    Article  Google Scholar 

  46. M. A. Lafontaine, A. Le Bail and G. Ferey, J. Solid State Chem., 85, 220 (1990).

    Article  CAS  Google Scholar 

  47. D. Klauson, S. Preis, E. Portjanskaja, A. Kachina, M. Krichevskaya and J. Kallas, Environ. Technol., 26, 653 (2005).

    Article  CAS  Google Scholar 

  48. M. J. L. Munoz, J. Aguado and B. Ruperez, Res. Chem. Intermed., 33, 377 (2007).

    Article  Google Scholar 

  49. C. He, Y. Xiong and X. Zhu, Appl. Catal. A Gen., 275, 55 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinki Bala Punjabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalal, S., Singh Chauhan, N.P., Ameta, N. et al. Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach. Korean J. Chem. Eng. 31, 2183–2191 (2014). https://doi.org/10.1007/s11814-014-0142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0142-z

Keywords

Navigation