Skip to main content

Surface forces apparatus and its applications for nanomechanics of underwater adhesives

Abstract

Successful adhesion on wet surfaces is one of the most important challenges in biomedical engineering. Marine fouling organisms exhibit effective adhesion for wet substrates, and the measurement of adhesion forces in wet conditions is the first step toward mimicking the smart strategies of the marine organisms. Surface forces apparatus (SFA) is one of the most powerful nanomechanical tools used to directly measure time- and distance-dependent interactions between biological macromolecules or biological surfaces in an aqueous medium at the molecular level. Recently, SFA has been adapted to probe the biomechanical nature of the underwater adhesive in marine organisms. This review describes some strategies of the marine fouling organisms for successful underwater adhesion determined using SFA.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Pizzi and K. L. Mittal, Handbook of adhesive technology, revised and expanded, CRC Press, New York (2003).

    Book  Google Scholar 

  2. 2.

    S. R. White, N. Sottos, P. Geubelle, J. Moore, M. R. Kessler, S. Sriram, E. Brown and S. Viswanathan, Nature, 409, 794 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    J.-Y. Kim, J.-H. Yoon, D.-H. Kim and S.-B. Kim, Korean J. Chem. Eng., 29, 503 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    C.-C. Chu, J. A. Von Fraunhofer and H. P. Greisler, Wound closure biomaterials and devices, CRC Press (1996).

    Google Scholar 

  5. 5.

    W. D. Spotnitz and S. Burks, Transfusion, 48, 1502 (2008).

    Article  Google Scholar 

  6. 6.

    C. D. Amsler, Algal chemical ecology, Springer, Heidelberg (2008).

    Book  Google Scholar 

  7. 7.

    C. J. Kavanagh, M. P. Schultz, G.W. Swain, J. Stein, K. Truby and C. D. Wood, Biofouling, 17, 155 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Sun, S. Guo, G. C. Walker, C. J. Kavanagh and G.W. Swain, Biofouling, 20, 279 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    D. S. Hwang, A. Masic, E. Prajatelistia, M. Iordachescu and J. Herbert Waite, Acta Biomater., 9, 8110 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    L. A. Thomas and C. O. Hermans, Biol. Bull., 169, 675 (1985).

    Article  Google Scholar 

  11. 11.

    L. Joll, Mar. Biol., 36, 327 (1976).

    Article  Google Scholar 

  12. 12.

    J. A. Callow and A. M. Smith, Biological Adhesives, Springer, Berlin (2006).

    Google Scholar 

  13. 13.

    J. H. Waite, Integr. Comp. Biol., 42, 1172 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    H. Zeng, Polymer Adhesion, Friction, and Lubrication, Wiley, New Jersey (2012).

    Google Scholar 

  15. 15.

    Y. J. Yang, Y. S. Choi, D. Jung and H. J. Cha, Korean J. Chem. Eng., 28, 1744 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    H. Zeng, D. S. Hwang, J.N. Israelachvili and J. H. Waite, Proc. Natl. Acad. Sci., 107, 12850 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    L. A. Burzio and J. H. Waite, Biochemistry, 39, 11147 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    S.W. Taylor, D. B. Chase, M.H. Emptage, M. J. Nelson and J. H. Waite, Inorg. Chem., 35, 7572 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    J. H. Waite, Comp. Biochem. Phys. B, 97, 19 (1990).

    CAS  Google Scholar 

  20. 20.

    D. A. Dougherty, Science, 271, 163 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    S. Mecozzi, A. P. West and D. A. Dougherty, Proc. Natl. Acad. Sci., 93, 10566 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    J. P. Gallivan and D. A. Dougherty, J. Am. Chem. Soc., 122, 870 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    Q. Lu, E. Danner, J. H. Waite, J. N. Israelachvili, H. Zeng and D. S. Hwang, J. R. Soc. Interface, 10, 20120759 (2013).

    Article  Google Scholar 

  24. 24.

    D. S. Hwang, H. Zeng, Q. Lu, J. Israelachvili and J. H. Waite, Soft Matter, 8, 5640 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Q. Lu, D. S. Hwang, Y. Liu and H. Zeng, Biomaterials, 33, 1903 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    D. S. Hwang, J. H. Waite and M. Tirrell, Biomaterials, 31, 1080 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    J. H. Waite, N. H. Andersen, S. Jewhurst and C. Sun, J. Adhes., 81, 297 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    A. Srivastava, J.H. Waite, G. D. Stucky and A. Mikhailovsky, Macromolecules, 42, 2168 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    H. Zhao, C. Sun, R. J. Stewart and J. H. Waite, J. Biol. Chem., 280, 42938 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    J. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika and K. Rosenberg, Rep. Prog. Phys., 73, 036601 (2010).

    Article  Google Scholar 

  31. 31.

    T. Hugel and M. Seitz, Macromol. Rapid Commun., 22, 989 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    A. Engel and D. J. Müller, Nat. Struct. Mol. Biol., 7, 715 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    M. Benz, T. Gutsmann, N. Chen, R. Tadmor and J. Israelachvili, Biophys. J., 86, 870 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Min, M. Akbulut, J. R. Sangoro, F. Kremer, R. K. Pruďhomme and J. Israelachvili, J. Phys. Chem., 113, 16445 (2009).

    CAS  Google Scholar 

  35. 35.

    J. Israelachvili and R. Pashley, Nature, 300, 341 (1982).

    CAS  Article  Google Scholar 

  36. 36.

    B. Bhushan, J.N. Israelachvili and U. Landman, Nature, 374, 607 (1995).

    CAS  Article  Google Scholar 

  37. 37.

    T. H. Anderson, J. Yu, A. Estrada, M. U. Hammer, J. H. Waite and J. N. Israelachvili, Adv. Funct. Mater., 20, 4196 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    D. S. Hwang, M. J. Harrington, Q. Lu, A. Masic, H. Zeng and J. H. Waite, J. Mater. Chem., 22, 15530 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T.H. Anderson, J. H. Waite and J. N. Israelachvili, Proc. Natl. Acad. Sci., 104, 3782 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    J. Yu, W. Wei, E. Danner, J. N. Israelachvili and J. H. Waite, Adv. Mater., 23, 2362 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    J. Yu, W. Wei, M.S. Menyo, A. Masic, J. H. Waite and J. N. Israelachvili, Biomacromolecules, 14, 1072 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    B. P. Lee, C.Y. Chao, F. N. Nunalee, E. Motan, K. R. Shull and P.B. Messersmith, Macromolecules, 39, 1740 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    M. Guvendiren, P. B. Messersmith and K. R. Shull, Biomacromolecules, 9, 122 (2007).

    Article  Google Scholar 

  44. 44.

    H. Lee, N. F. Scherer and P. B. Messersmith, Proc. Natl. Acad. Sci., 103, 12999 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, and J.W. Choi, Adv. Mater., 25, 1570 (2013).

    Article  Google Scholar 

  46. 46.

    D. S. Hwang, H. J. Yoo, J. H. Jun, W.K. Moon and H. J. Cha, Appl. Environ. Microbiol., 70, 3352 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    D. S. Hwang, Y. Gim and H. J. Cha, Biotechnol. Prog., 21, 965 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    D. S. Hwang, Y. Gim, H. J. Yoo and H. J. Cha, Biomaterials, 28, 3560 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    N. Maeda, N. Chen, M. Tirrell and J. N. Israelachvili, Science, 297, 379 (2002).

    CAS  Article  Google Scholar 

  50. 50.

    C. Creton, MRS Bull., 28, 434 (2003).

    CAS  Article  Google Scholar 

  51. 51.

    D. S. Hwang, H. Zeng, A. Masic, M. J. Harrington, J. N. Israelachvili and J. H. Waite, J. Biol. Chem., 285, 25850 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    J. Yu, W. Wei, E. Danner, R.K. Ashley, J. N. Israelachvili and J. H. Waite, Nat. Chem. Biol., 7, 588 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    E.W. Danner, Y. Kan, M.U. Hammer, J. N. Israelachvili and J. H. Waite, Biochemistry, 51, 6511 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    N. Holten-Andersen, G. E. Fantner, S. Hohlbauch, J. H. Waite and F.W. Zok, Nat. Mater., 6, 669 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Q. Lu, D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang and H. Zeng, Angew. Chem. Int. Ed., 125, 4036 (2013).

    Article  Google Scholar 

  56. 56.

    S. E. Wheeler and K. Houk, J. Am. Chem. Soc., 131, 3126 (2009).

    CAS  Article  Google Scholar 

  57. 57.

    D. Priftis, R. Farina and M. Tirrell, Langmuir, 28, 8721 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    D. S. Hwang, H. Zeng, A. Srivastava, D.V. Krogstad, M. Tirrell, J. N. Israelachvili and J. H. Waite, Soft Matter, 6, 3232 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Hwang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, D.X., Shin, S., Yoo, H.Y. et al. Surface forces apparatus and its applications for nanomechanics of underwater adhesives. Korean J. Chem. Eng. 31, 1306–1315 (2014). https://doi.org/10.1007/s11814-014-0136-x

Download citation

Keywords

  • Surface Forces Apparatus
  • L-3,4-Dihydroxyphenyl Alanine (DOPA)
  • Underwater Adhesion
  • Complex Coacervate
  • Cation-π Interaction
  • Marine Adhesive
  • Underwater Adhesion