Korean Journal of Chemical Engineering

, Volume 31, Issue 8, pp 1306–1315 | Cite as

Surface forces apparatus and its applications for nanomechanics of underwater adhesives

  • Dongyeop Xris Oh
  • Sara Shin
  • Hee Young Yoo
  • Chanoong Lim
  • Dong Soo Hwang
Review Paper


Successful adhesion on wet surfaces is one of the most important challenges in biomedical engineering. Marine fouling organisms exhibit effective adhesion for wet substrates, and the measurement of adhesion forces in wet conditions is the first step toward mimicking the smart strategies of the marine organisms. Surface forces apparatus (SFA) is one of the most powerful nanomechanical tools used to directly measure time- and distance-dependent interactions between biological macromolecules or biological surfaces in an aqueous medium at the molecular level. Recently, SFA has been adapted to probe the biomechanical nature of the underwater adhesive in marine organisms. This review describes some strategies of the marine fouling organisms for successful underwater adhesion determined using SFA.


Surface Forces Apparatus L-3,4-Dihydroxyphenyl Alanine (DOPA) Underwater Adhesion Complex Coacervate Cation-π Interaction Marine Adhesive Underwater Adhesion 


  1. 1.
    A. Pizzi and K. L. Mittal, Handbook of adhesive technology, revised and expanded, CRC Press, New York (2003).CrossRefGoogle Scholar
  2. 2.
    S. R. White, N. Sottos, P. Geubelle, J. Moore, M. R. Kessler, S. Sriram, E. Brown and S. Viswanathan, Nature, 409, 794 (2001).CrossRefGoogle Scholar
  3. 3.
    J.-Y. Kim, J.-H. Yoon, D.-H. Kim and S.-B. Kim, Korean J. Chem. Eng., 29, 503 (2012).CrossRefGoogle Scholar
  4. 4.
    C.-C. Chu, J. A. Von Fraunhofer and H. P. Greisler, Wound closure biomaterials and devices, CRC Press (1996).Google Scholar
  5. 5.
    W. D. Spotnitz and S. Burks, Transfusion, 48, 1502 (2008).CrossRefGoogle Scholar
  6. 6.
    C. D. Amsler, Algal chemical ecology, Springer, Heidelberg (2008).CrossRefGoogle Scholar
  7. 7.
    C. J. Kavanagh, M. P. Schultz, G.W. Swain, J. Stein, K. Truby and C. D. Wood, Biofouling, 17, 155 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Sun, S. Guo, G. C. Walker, C. J. Kavanagh and G.W. Swain, Biofouling, 20, 279 (2004).CrossRefGoogle Scholar
  9. 9.
    D. S. Hwang, A. Masic, E. Prajatelistia, M. Iordachescu and J. Herbert Waite, Acta Biomater., 9, 8110 (2013).CrossRefGoogle Scholar
  10. 10.
    L. A. Thomas and C. O. Hermans, Biol. Bull., 169, 675 (1985).CrossRefGoogle Scholar
  11. 11.
    L. Joll, Mar. Biol., 36, 327 (1976).CrossRefGoogle Scholar
  12. 12.
    J. A. Callow and A. M. Smith, Biological Adhesives, Springer, Berlin (2006).Google Scholar
  13. 13.
    J. H. Waite, Integr. Comp. Biol., 42, 1172 (2002).CrossRefGoogle Scholar
  14. 14.
    H. Zeng, Polymer Adhesion, Friction, and Lubrication, Wiley, New Jersey (2012).Google Scholar
  15. 15.
    Y. J. Yang, Y. S. Choi, D. Jung and H. J. Cha, Korean J. Chem. Eng., 28, 1744 (2011).CrossRefGoogle Scholar
  16. 16.
    H. Zeng, D. S. Hwang, J.N. Israelachvili and J. H. Waite, Proc. Natl. Acad. Sci., 107, 12850 (2010).CrossRefGoogle Scholar
  17. 17.
    L. A. Burzio and J. H. Waite, Biochemistry, 39, 11147 (2000).CrossRefGoogle Scholar
  18. 18.
    S.W. Taylor, D. B. Chase, M.H. Emptage, M. J. Nelson and J. H. Waite, Inorg. Chem., 35, 7572 (1996).CrossRefGoogle Scholar
  19. 19.
    J. H. Waite, Comp. Biochem. Phys. B, 97, 19 (1990).Google Scholar
  20. 20.
    D. A. Dougherty, Science, 271, 163 (1996).CrossRefGoogle Scholar
  21. 21.
    S. Mecozzi, A. P. West and D. A. Dougherty, Proc. Natl. Acad. Sci., 93, 10566 (1996).CrossRefGoogle Scholar
  22. 22.
    J. P. Gallivan and D. A. Dougherty, J. Am. Chem. Soc., 122, 870 (2000).CrossRefGoogle Scholar
  23. 23.
    Q. Lu, E. Danner, J. H. Waite, J. N. Israelachvili, H. Zeng and D. S. Hwang, J. R. Soc. Interface, 10, 20120759 (2013).CrossRefGoogle Scholar
  24. 24.
    D. S. Hwang, H. Zeng, Q. Lu, J. Israelachvili and J. H. Waite, Soft Matter, 8, 5640 (2012).CrossRefGoogle Scholar
  25. 25.
    Q. Lu, D. S. Hwang, Y. Liu and H. Zeng, Biomaterials, 33, 1903 (2012).CrossRefGoogle Scholar
  26. 26.
    D. S. Hwang, J. H. Waite and M. Tirrell, Biomaterials, 31, 1080 (2010).CrossRefGoogle Scholar
  27. 27.
    J. H. Waite, N. H. Andersen, S. Jewhurst and C. Sun, J. Adhes., 81, 297 (2005).CrossRefGoogle Scholar
  28. 28.
    A. Srivastava, J.H. Waite, G. D. Stucky and A. Mikhailovsky, Macromolecules, 42, 2168 (2009).CrossRefGoogle Scholar
  29. 29.
    H. Zhao, C. Sun, R. J. Stewart and J. H. Waite, J. Biol. Chem., 280, 42938 (2005).CrossRefGoogle Scholar
  30. 30.
    J. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika and K. Rosenberg, Rep. Prog. Phys., 73, 036601 (2010).CrossRefGoogle Scholar
  31. 31.
    T. Hugel and M. Seitz, Macromol. Rapid Commun., 22, 989 (2001).CrossRefGoogle Scholar
  32. 32.
    A. Engel and D. J. Müller, Nat. Struct. Mol. Biol., 7, 715 (2000).CrossRefGoogle Scholar
  33. 33.
    M. Benz, T. Gutsmann, N. Chen, R. Tadmor and J. Israelachvili, Biophys. J., 86, 870 (2004).CrossRefGoogle Scholar
  34. 34.
    Y. Min, M. Akbulut, J. R. Sangoro, F. Kremer, R. K. Pruďhomme and J. Israelachvili, J. Phys. Chem., 113, 16445 (2009).Google Scholar
  35. 35.
    J. Israelachvili and R. Pashley, Nature, 300, 341 (1982).CrossRefGoogle Scholar
  36. 36.
    B. Bhushan, J.N. Israelachvili and U. Landman, Nature, 374, 607 (1995).CrossRefGoogle Scholar
  37. 37.
    T. H. Anderson, J. Yu, A. Estrada, M. U. Hammer, J. H. Waite and J. N. Israelachvili, Adv. Funct. Mater., 20, 4196 (2010).CrossRefGoogle Scholar
  38. 38.
    D. S. Hwang, M. J. Harrington, Q. Lu, A. Masic, H. Zeng and J. H. Waite, J. Mater. Chem., 22, 15530 (2012).CrossRefGoogle Scholar
  39. 39.
    Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T.H. Anderson, J. H. Waite and J. N. Israelachvili, Proc. Natl. Acad. Sci., 104, 3782 (2007).CrossRefGoogle Scholar
  40. 40.
    J. Yu, W. Wei, E. Danner, J. N. Israelachvili and J. H. Waite, Adv. Mater., 23, 2362 (2011).CrossRefGoogle Scholar
  41. 41.
    J. Yu, W. Wei, M.S. Menyo, A. Masic, J. H. Waite and J. N. Israelachvili, Biomacromolecules, 14, 1072 (2013).CrossRefGoogle Scholar
  42. 42.
    B. P. Lee, C.Y. Chao, F. N. Nunalee, E. Motan, K. R. Shull and P.B. Messersmith, Macromolecules, 39, 1740 (2006).CrossRefGoogle Scholar
  43. 43.
    M. Guvendiren, P. B. Messersmith and K. R. Shull, Biomacromolecules, 9, 122 (2007).CrossRefGoogle Scholar
  44. 44.
    H. Lee, N. F. Scherer and P. B. Messersmith, Proc. Natl. Acad. Sci., 103, 12999 (2006).CrossRefGoogle Scholar
  45. 45.
    M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, and J.W. Choi, Adv. Mater., 25, 1570 (2013).CrossRefGoogle Scholar
  46. 46.
    D. S. Hwang, H. J. Yoo, J. H. Jun, W.K. Moon and H. J. Cha, Appl. Environ. Microbiol., 70, 3352 (2004).CrossRefGoogle Scholar
  47. 47.
    D. S. Hwang, Y. Gim and H. J. Cha, Biotechnol. Prog., 21, 965 (2005).CrossRefGoogle Scholar
  48. 48.
    D. S. Hwang, Y. Gim, H. J. Yoo and H. J. Cha, Biomaterials, 28, 3560 (2007).CrossRefGoogle Scholar
  49. 49.
    N. Maeda, N. Chen, M. Tirrell and J. N. Israelachvili, Science, 297, 379 (2002).CrossRefGoogle Scholar
  50. 50.
    C. Creton, MRS Bull., 28, 434 (2003).CrossRefGoogle Scholar
  51. 51.
    D. S. Hwang, H. Zeng, A. Masic, M. J. Harrington, J. N. Israelachvili and J. H. Waite, J. Biol. Chem., 285, 25850 (2010).CrossRefGoogle Scholar
  52. 52.
    J. Yu, W. Wei, E. Danner, R.K. Ashley, J. N. Israelachvili and J. H. Waite, Nat. Chem. Biol., 7, 588 (2011).CrossRefGoogle Scholar
  53. 53.
    E.W. Danner, Y. Kan, M.U. Hammer, J. N. Israelachvili and J. H. Waite, Biochemistry, 51, 6511 (2012).CrossRefGoogle Scholar
  54. 54.
    N. Holten-Andersen, G. E. Fantner, S. Hohlbauch, J. H. Waite and F.W. Zok, Nat. Mater., 6, 669 (2007).CrossRefGoogle Scholar
  55. 55.
    Q. Lu, D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang and H. Zeng, Angew. Chem. Int. Ed., 125, 4036 (2013).CrossRefGoogle Scholar
  56. 56.
    S. E. Wheeler and K. Houk, J. Am. Chem. Soc., 131, 3126 (2009).CrossRefGoogle Scholar
  57. 57.
    D. Priftis, R. Farina and M. Tirrell, Langmuir, 28, 8721 (2012).CrossRefGoogle Scholar
  58. 58.
    D. S. Hwang, H. Zeng, A. Srivastava, D.V. Krogstad, M. Tirrell, J. N. Israelachvili and J. H. Waite, Soft Matter, 6, 3232 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Dongyeop Xris Oh
    • 1
  • Sara Shin
    • 2
  • Hee Young Yoo
    • 3
  • Chanoong Lim
    • 4
  • Dong Soo Hwang
    • 1
    • 2
    • 3
    • 4
  1. 1.POSTECH Ocean Science and Technology InstitutePohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.School of Environmental Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea
  3. 3.Integrative Biosciences and BiotechnologyPohang University of Science and Technology (POSTECH)PohangKorea
  4. 4.School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations