Skip to main content
Log in

Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Proper correction of water and heavy hydrocarbon dew points of sweet natural gases is essential from various technical and economical standpoints. Supersonic separators (3S) are proved to be capable of achieving these tasks with maximum reliability and minimal expenses. The majority of the previous articles have focused on the flow behavior of pure fluids across a 3S unit. Multicomponent fluid flow inside 3S accompanied with condensation phenomenon will drastically increase the complexity of the simulation process. We tackle this issue by considering a proper combination of fundamental governing equations and phase equilibrium calculations to predict various operating conditions and composition profiles across two multi-component and multi-phase 3S units. Various Iranian sweet gases are used as real case studies to demonstrate the importance of 3S unit practical applications. Simulation results clearly illustrate the effectiveness of 3S units for faithful dehydration of various natural gases, while successfully controlling its dew point, suitable for any practical applications. Conventional HYSYS simulation software is used to validate the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Betting and H. D. Epsom, World Oil Mag., 254, 197 (2007).

    Google Scholar 

  2. A. Karimi and M. A. Abdi, Chem. Eng. Process., 48, 560 (2009).

    Article  CAS  Google Scholar 

  3. P. B. Machado, J. G.M. Monteiro, J. L. Medeiros, H. D. Epsom and O. Q. F. Araujo, J. Nat. Gas. Sci. Eng., 6, 43 (2012).

    Article  CAS  Google Scholar 

  4. F. Okimoto and J. M. Brouwer, World Oil Mag., 223, 89 (2002).

    Google Scholar 

  5. V. I. Alferov, L. A. Baguirov, L. Dmitriev, V. Feygin, S. Imaev and J. R. Lace, Oil Gas J., 103, 53 (2005).

    Google Scholar 

  6. P. Schinkelshoek and H. Epsom, in Proc. GPA 87th Annual Convention, TX (2008).

    Google Scholar 

  7. H. Liu, Z. Liu, Y. Feng, K. Gu and T. Yan, Chin. J. Chem. Eng., 13, 9 (2005).

    Google Scholar 

  8. E. Jassim, M. A. Abdi and Y. Muzychka, Pet. Sci. Technol., 26, 1757 (2008).

    Article  CAS  Google Scholar 

  9. E. Jassim, M. A. Abdi and Y. Muzychka, Pet. Sci. Technol., 26, 1773 (2008).

    Article  CAS  Google Scholar 

  10. M. M. Malyshkina, High Temp., 46, 69 (2008).

    Article  CAS  Google Scholar 

  11. M. M. Malyshkina, High Temp., 48, 244 (2010).

    Article  CAS  Google Scholar 

  12. C. Wen, X. Cao and Y. Yang, Chem. Eng. Process., 50, 644 (2011).

    Article  CAS  Google Scholar 

  13. C. Wen, X. Cao, Y. Yang and J. Zhang, Chem. Eng. Technol., 34, 1575 (2011).

    Article  CAS  Google Scholar 

  14. C. Wen, X. Cao, Y. Yang and W. Li, Energy, 37, 195 (2012).

    Article  CAS  Google Scholar 

  15. C. Wen, X. Cao, Y. Yang and J. Zhang, Adv. Powder Technol., 23, 228 (2012).

    Article  CAS  Google Scholar 

  16. M. Ghanbari Mazidi, A. Shahsavand and B.M. Vaziri, J. Pet. Technol., In press.

  17. F. Bakhtart and M. T. Mohammadi Tochai, Int. J. Heat Fluid Flow, 2, 5 (1980).

    Article  Google Scholar 

  18. A. Guha and J. B. Young, I Mech E Conf. Publ., 167 (1991).

    Google Scholar 

  19. G. Cinar, B. S. Yilbas and M. Sunar, Int. J. Multiphase Flow, 23, 1171 (1997).

    Article  CAS  Google Scholar 

  20. A. J. White and M. J. Hounslow, Int. J. Heat Mass Transfer, 43, 1873 (2000).

    Article  CAS  Google Scholar 

  21. S. Dykas, Task Q., 5, 519 (2001).

    Google Scholar 

  22. A. G. Gerber and M. J. Kermani, Int. J. Heat Mass Transfer, 47, 2217 (2004).

    Article  CAS  Google Scholar 

  23. M. R. Mahpeykar and A. R. Teymourtash, Sci. Iran., Trans. B., 11, 269 (2004).

    Google Scholar 

  24. Y. Yang and Sh. Shen, Int. Commun. Heat Mass Transfer, 36, 902 (2009).

    Article  CAS  Google Scholar 

  25. S. Dykas and W. Wroblewski, Int. J. Heat Mass Transfer, 53, 933 (2012).

    Google Scholar 

  26. G. Cinar, B. S. Yilbas and M. Sunar, Int. J. Multiphase Flow, 23, 1171 (1997).

    Article  CAS  Google Scholar 

  27. Q. F. Ma, D. P. Hu, J. Z. Jiang and Z. H. Qiu, Int. J. Comput. Fluid Dyn., 23, 221 (2009).

    Article  Google Scholar 

  28. Q. F. Ma, D. P. Hu, J. Z. Jiang and Z. H. Qiu, Int. J. Comput. Fluid Dyn., 24, 29 (2010).

    Article  CAS  Google Scholar 

  29. B. Lingling, L. Zhongliang, L. Hengwei, J. Wenming, Z. Ming and Z. Jian, Sci. China Technol. Sci., 53, 435 (2010).

    Google Scholar 

  30. S. H. Rajaee Shooshtari and A. Shahsavand, J. Sep. Purif. Technol., 116, 458 (2013).

    Article  Google Scholar 

  31. S. D. Mohaghegh, J. Pet. Technol., 57, 8691 (2005).

    Google Scholar 

  32. S. Zendehboudi, M. A. Ahmadi, A. Bahadori, A. Shafiei and T. Babadagli, Can. J. Chem. Eng., 91, 1325 (2013).

    Article  CAS  Google Scholar 

  33. G. Zahedi, A. R. Fazlali, S.M. Hussein, G. R. Pazuki and L. Sheikhattar, J. Pet. Sci. Eng., 68, 218 (2009).

    Article  CAS  Google Scholar 

  34. A. Shahsavand and A. Ahmadpour, Comput. Chem. Eng., 29, 2134 (2005).

    Article  CAS  Google Scholar 

  35. A. Shahsavand and M. Pourafshari Chenar, J. Membr. Sci., 297, 59 (2007).

    Article  CAS  Google Scholar 

  36. B.M. Vaziri, A. Shahsavand, H. Rashidi and M. G. Mazidi, in Proc. 13 th Iranian National Chemical Engineering Cong. & 1 st Int. Regional Chemical and Petroleum Engineering, Kermanshah, Iran (2010).

    Google Scholar 

  37. A. Kohl and R. Nielsen, Gas Purification. 5th Ed., Gulf Pub. Co., Houston, Texas (1997).

    Google Scholar 

  38. T. H. Ahmed, Hydrocarbon phase behavior, 1st Ed., Gulf Pub. Co., USA (1989).

    Google Scholar 

  39. W. D. Mccain, The properties of petroleum fluid, 2nd Ed., Pennwell Pub. Co., Tlsu, Oklahoma, USA (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Shahsavand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shooshtari, S.H.R., Shahsavand, A. Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators. Korean J. Chem. Eng. 31, 1845–1858 (2014). https://doi.org/10.1007/s11814-014-0133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0133-0

Keywords

Navigation