Skip to main content
Log in

A comparative study of hybrid models combining various kinetic and regression models for p-xylene oxidation

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hybrid modeling approach, which combines kinetic and regression module parts to an overall process model, is an attractive process modeling approach. However, the selection of various kinetic and regression models affects the hybrid model performance. As an illustrating example, we investigated the p-xylene (PX) oxidation process and summarized the published results of the PX oxidation kinetic model. The kinetic parameters of three kinetic models (i.e., three frequently used kinetic models of PX oxidation) were estimated and the fitting results were evaluated. Six hybrid models were then developed based on these three kinetic models and two regression models (artificial neural network and support vector regression). Afterwards, a comparative study of the six hybrid models was carried out based on various kinetic and regression models. The performances of these kinetic and regression models on the hybrid models were also evaluated. Finally, the best suitable hybrid model was obtained for the PX oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Lee, S. B. Kim, H. Y. Yoo, J. H. Lee, C. Park, S. O. Han and S.W. Kim, Korean J. Chem. Eng., 30(6), 1272 (2013).

    Article  CAS  Google Scholar 

  2. B. Duarte, P. Saraiva and C. Pantelides, Int. J. Chem. Reactor Eng., 2(1) (2004), DOI:10.2202/1542-6580.1128.

    Google Scholar 

  3. N. Patil, P. Shelokar, V. Jayaraman and B. Kulkarni, Chem. Eng. Res. Des., 83(8), 1030 (2005).

    Article  CAS  Google Scholar 

  4. S. S. Haykin, Neural networks: A comprehensive foundation, Prentice-Hall Englewood Cliffs, NJ (2007).

    Google Scholar 

  5. S. Nandi, S. Ghosh, S. S. Tambe and B. D. Kulkarni, AIChE J., 47(1), 126 (2001).

    Article  CAS  Google Scholar 

  6. M. Lashkarbolooki, A. Z. Hezave and A. Babapoor, Korean J. Chem. Eng., 30(1), 213 (2013).

    Article  CAS  Google Scholar 

  7. T. C. Park, U. S. Kim, L.-H. Kim, B.W. Jo and Y. K. Yeo, Korean J. Chem. Eng., 27(4), 1063 (2010).

    Article  CAS  Google Scholar 

  8. A. B. Gandhi, P. P. Gupta, J. B. Joshi, V. K. Jayaraman and B. D. Kulkarni, Ind. Eng. Chem. Res., 48(9), 4216 (2009).

    Article  CAS  Google Scholar 

  9. V. Vapnik, The nature of statistical learning theory, Springer (1999).

    Google Scholar 

  10. S. K. Lahiri and K. C. Ghanta, Korean J. Chem. Eng., 26(5), 1175 (2009).

    Article  CAS  Google Scholar 

  11. T. C. Park, T. Y. Kim and Y. K. Yeo, Korean J. Chem. Eng., 27(6), 1662 (2010).

    Article  CAS  Google Scholar 

  12. C. J. Lee, J.W. Ko and G. Lee, Korean J. Chem. Eng., 29(2), 145 (2012).

    Article  CAS  Google Scholar 

  13. A. Fazlali, P. Koranian, R. Beigzadeh and M. Rahimi, Korean J. Chem. Eng., 30(9), 1681 (2013).

    Article  CAS  Google Scholar 

  14. D. E. Lee, S.-O. Song and E. S. Yoon, Korean J. Chem. Eng., 21(6), 1103 (2004).

    Article  CAS  Google Scholar 

  15. D. C. Psichogios and L. H. Ungar, AIChE J., 38(10), 1499 (1992).

    Article  CAS  Google Scholar 

  16. H. Qi, X.-G. Zhou, L.-H. Liu and W.-K. Yuan, Chem. Eng. Sci., 54(13), 2521 (1999).

    Article  CAS  Google Scholar 

  17. G. Zahedi, A. Elkamel, A. Lohi, A. Jahanmiri and M. Rahimpor, Chem. Eng. J., 115(1), 113 (2005).

    Article  CAS  Google Scholar 

  18. X. Yan, Chem. Eng. Sci., 62(10), 2641 (2007).

    Article  CAS  Google Scholar 

  19. L. L. Simon, U. Fischer and K. Hungerbühler, Ind. Eng. Chem. Res., 45(21), 7336 (2006).

    Article  CAS  Google Scholar 

  20. S. Ou and L. E. Achenie, J. Power Sources, 140(2), 319 (2005).

    Article  CAS  Google Scholar 

  21. B. Shiva Kumar and C. Venkateswarlu, Bioresour. Technol., 103(1), 300 (2012).

    Article  Google Scholar 

  22. H. J. Zander, R. Dittmeyer and J. Wagenhuber, Chem. Eng. Technol., 22(7), 571 (1999).

    Article  CAS  Google Scholar 

  23. G. Zahedi, A. Lohi and K. Mahdi, Fuel Process. Technol., 92(9), 1725 (2011).

    Article  CAS  Google Scholar 

  24. Q. Sun, C. Pan and X. Yan, Korean J. Chem. Eng., 30(3), 518 (2013).

    Article  CAS  Google Scholar 

  25. N. Luo, W. Du, Z. Ye and F. Qian, Ind. Eng. Chem. Res., 51(19), 6926 (2012).

    Article  CAS  Google Scholar 

  26. H. Ince and T. B. Trafalis, Decision Support Systems, 42(2), 1054 (2006).

    Article  Google Scholar 

  27. B. P. Duarte and P. M. Saraiva, Ind. Eng. Chem. Res., 42(1), 99 (2003).

    Article  CAS  Google Scholar 

  28. X. Wang, J. Chen, C. Liu and F. Pan, Chem. Eng. Res. Des., 88(4), 415 (2010).

    Article  CAS  Google Scholar 

  29. R.-d. Jia, Z.-z. Mao, Y.-q. Chang and L.-p. Zhao, Chem. Eng. Res. Des., 89(6), 722 (2011).

    Article  CAS  Google Scholar 

  30. G. Cao, M. Pisu and M. Morbidelli, Chem.Eng. Sci., 49(24), 5775 (1994).

    Article  CAS  Google Scholar 

  31. Q. Wang, X. Li, L. Wang, Y. Cheng and G. Xie, Ind. Eng. Chem. Res., 44(2), 261 (2005).

    Article  CAS  Google Scholar 

  32. W. Sun, Y. Pan, L. Zhao and X. Zhou, Chem.Eng. Technol., 31(10), 1402 (2008).

    Article  CAS  Google Scholar 

  33. X. Yan and W. Zhao, Intell. Autom. Soft. Co., 15(1), 41 (2009).

    Article  Google Scholar 

  34. Y. Xuefeng, Chemometr. Intell. Lab., 103(2), 152 (2010).

    Article  Google Scholar 

  35. G. Cao, A. Servida, M. Pisu and M. Morbidelli, AIChE J., 40(7), 1156 (1994).

    Article  CAS  Google Scholar 

  36. A. Cincotti, R. Orru, A. Broi and G. Cao, Chem.Eng. Sci., 52(21), 4205 (1997).

    Article  CAS  Google Scholar 

  37. A. Cincotti, R. Orru and G. Cao, Catal. Today, 52(2–3), 331 (1999).

    CAS  Google Scholar 

  38. X. Yan, W. Du and F. Qian, AIChE J., 50(6), 1169 (2004).

    Article  CAS  Google Scholar 

  39. Q. Wang, Y. Cheng, L. Wang and X. Li, Ind. Eng. Chem. Res., 46(26), 8980 (2007).

    Article  CAS  Google Scholar 

  40. Q. Wang, X. Li, L. Wang, Y. Cheng and G. Xie, Ind. Eng. Chem. Res., 44(13), 4518 (2005).

    Article  CAS  Google Scholar 

  41. F. Qian, L. Tao, W. Sun and W. Du, Ind. Eng. Chem. Res., 51(8), 3229 (2012).

    Article  CAS  Google Scholar 

  42. Y. Dong and X. Yan, Ind. Eng. Chem. Res., 52(7), 2537 (2013).

    Article  CAS  Google Scholar 

  43. P. Raghavendrachar and S. Ramachandran, Ind. Eng. Chem. Res., 31(2), 453 (1992).

    Article  CAS  Google Scholar 

  44. C. H. Bamford, Comprehensive chemical kinetics, Elsevier Science Ltd. (1972).

    Google Scholar 

  45. C. C. Chang and C. J. Lin, ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Yan, X. A comparative study of hybrid models combining various kinetic and regression models for p-xylene oxidation. Korean J. Chem. Eng. 31, 1746–1756 (2014). https://doi.org/10.1007/s11814-014-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0126-z

Keywords

Navigation