Skip to main content
Log in

Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermal regeneration of spent granular activated carbon (GAC) using sintering, air-activation, and deoxygenation was investigated to determine the potential of this method for overcoming the drawbacks of thermal regeneration. The conditions for each step were optimized. The physicochemical properties of four regenerated GACs were assessed using BET, SEM, and FT-IR analysis. The suitability of the regenerated GACs for liquid-phase applications was assessed by phenol adsorption, using adsorption isotherms, kinetics, and thermodynamics. Sintering increased the micropore area and volume of regenerated GAC by 19% and 16%, respectively, and controlled excessive burn-off, reducing it by 19%. Air-activation has economic advantages because the reaction time is 80% less than that for steamactivation. Deoxygenation improved the maximum adsorption capacity by 7%, although the number of micropores was reduced. Regenerated GAC by sintering, air-activation, and deoxygenation was best for liquid-phase applications; the results show that these steps help to overcome the drawbacks of thermal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. E. Sabio, E. González, J. F. González, C.M. González-García, A. Ramiro and J. Gañan, Carbon, 42, 2285 (2004).

    Article  CAS  Google Scholar 

  2. G. San Miguel, S. D. Lambert and N. J. D. Graham, Water Res., 35, 2740 (2001).

    Article  CAS  Google Scholar 

  3. A. L. Cazetta, O. P. Junior, A. M.M. Vargas, A. P. da Silva, X. Zou, T. Asefa and V. C. Almeida, J. Anal. Appl. Pyrol., 101, 53 (2013).

    Article  CAS  Google Scholar 

  4. R.M. Narbaitz and J. McEwen, Water Res., 46, 4852 (2012).

    Article  CAS  Google Scholar 

  5. B. Lai, Y. X. Zhou and P. Yang, J. Chem. Technol. Biotechnol., 88, 474 (2013).

    Article  CAS  Google Scholar 

  6. S. Román, B. Ledesma, A. Álvarez-Murillo and J. F. González, Fuel Process. Technol., 116, 358 (2013).

    Article  Google Scholar 

  7. M. Franz, H. A. Arafat and N.G. Pinto, Carbon, 38, 1807 (2000).

    Article  CAS  Google Scholar 

  8. D.W. Mazyck and F. S. Cannon, Carbon, 38, 1785 (2000).

    Article  CAS  Google Scholar 

  9. D.W. Mazyck and F. S. Cannon, Carbon, 40, 241 (2002).

    Article  CAS  Google Scholar 

  10. F. S. Cannon, Carbon, 32, 1285 (1994).

    Article  CAS  Google Scholar 

  11. H. McLaughlin, Int. Sugar J., 107, 112 (2005).

    CAS  Google Scholar 

  12. K. S. Ryoo, T. D. Kim and Y. H. Kim, Bull. Korean Chem. Soc., 23, 817 (2002).

    Article  CAS  Google Scholar 

  13. S. Román, B. Ledesma, A. Álvarez-Murillo and J. F. González, Fuel Process. Technol., 116 358 (2013).

    Article  Google Scholar 

  14. P. Pendleton, S. H. Wu and A. Badalyan, J. Colloid Interface Sci., 246, 235 (2002).

    Article  CAS  Google Scholar 

  15. KSM 1802, Test methods for activated carbon, Korea Industrial Standards, Korean Agency for Technology and Standards (2009).

    Google Scholar 

  16. Z. Zhang, W. Qu, J. Peng, L. Zhang, X. Ma, Z. Zhang and W. Li, Desalination, 249, 247 (2009).

    Article  CAS  Google Scholar 

  17. B. H. Hameed and A.A. Rahman, J. Hazard. Mater., 160, 576 (2008).

    Article  CAS  Google Scholar 

  18. A. T. M. Din, B. H. Hameed and A. L. Ahmad, J. Hazard. Mater., 161, 1522 (2009).

    Article  CAS  Google Scholar 

  19. V. C. Srivastava, M.M. Swamy, I. D. Mall, B. Prasad and I.M. Mishra, Colloids Surf., A., 272, 89 (2006).

    Article  CAS  Google Scholar 

  20. N. D. McCafferty, M. E. Callow, L. Hoggett, B. Holden and B. S.C. Leadbeater, Water Res., 34, 2199 (2000).

    Article  CAS  Google Scholar 

  21. D. Clifford, S. Subramonian and T. J. Sorg, Environ. Sci. Technol., 20, 1072 (1986).

    Article  CAS  Google Scholar 

  22. J. A. Moulijn, A. E.V. Diepen and F. Kapteijn, Appl. Catal. A- Gen., 212, 3 (2001).

    Article  CAS  Google Scholar 

  23. C. H. Bartholomew, Appl. Catal. A-Gen., 212, 17 (2001).

    Article  CAS  Google Scholar 

  24. J.H. Yang, S. M. Shih and P.H. Lin, Ind. Eng. Chem. Res., 51, 2553 (2012).

    Article  CAS  Google Scholar 

  25. G. San Miguel, S. D. Lambert and N. J. D. Graham, Appl. Catal. BEnviron., 40, 185 (2003).

    Article  Google Scholar 

  26. R. Yan, D. T. Liang, L. Tsen, Y. P. Wong and Y. K. Lee, Fuel, 83, 2401 (2004).

    Article  CAS  Google Scholar 

  27. D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, M. Razvigorova and V. Minkova, Biomass Bioenergy, 21, 133 (2001).

    Article  CAS  Google Scholar 

  28. D. Xin-hui, C. Srinivasakannan, W.W. Qu, W. Xin, P. Jin-hui and Z. Li-bo, Chem. Eng. Process., 53, 53 (2012).

    Article  Google Scholar 

  29. B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou and J. Wang, Appl. Catalysis. B-Environ., 144, 816 (2014).

    Article  CAS  Google Scholar 

  30. B. Lai, Y. Zhou and P. Yang, Chem. Eng. J., 200–202, 10 (2012).

    Article  Google Scholar 

  31. C. H. Cheng, J. Lehmann, J. E. Thies, S.D. Burton and M. H. Engelhard, Org. Geochem., 37, 1477 (2006).

    Article  CAS  Google Scholar 

  32. I.H. Yoon, X. Meng, C. Wang, K.W. Kim, S. Bang, E. Choe and L. Lippincott, J. Hazard. Mater., 164, 87 (2009).

    Article  CAS  Google Scholar 

  33. A. Swiatkowski, M. Pakula, S. Biniak and M. Walczyk, Carbon, 42, 3057 (2004).

    Article  CAS  Google Scholar 

  34. S. Azizian, J. Colloid Interface Sci., 276, 47 (2004).

    Article  CAS  Google Scholar 

  35. A.Y. Dursun and Ç. S. Kalayci, J. Hazard. Mater., 123, 151 (2005).

    Article  CAS  Google Scholar 

  36. M. S. Bilgili, J. Hazard. Mater., 137, 157 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Joong Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JH., Kim, YS., Jeon, SB. et al. Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation. Korean J. Chem. Eng. 31, 1641–1650 (2014). https://doi.org/10.1007/s11814-014-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0125-0

Keywords

Navigation