Skip to main content

Advertisement

Log in

Low-cost metal oxide activated carbon prepared and modified by microwave heating method for hydrogen storage

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Novel microporous activated carbon (MAC) with high surface area and pore volume has been synthesized by microwave heating. Iron oxide nanoparticles were loaded into MAC by using Fe(NO3)3·9H2O followed by microwave irradiation for up to five minutes. The surface modified microporous activated carbon was characterized by BET, XRD, SEM and thermogravimetric examinations. Adsorption data of H2 on the unmodified and modified MACs were collected with PCT method for a pressure range up to 120 bar at 303 K. Greater hydrogen adsorption was observed on the carbon adsorbents doped with 1.45 wt% of iron oxide nanoparticle loaded due to the joint properties of hydrogen adsorption on the carbon surface and the spill-over of hydrogen molecules into carbon structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. R. K. Ahluwalia, T. Q. Hua, J. K. Peng, S. Lasher, K. McKenney, J. Sinha and M. Gardiner, Int. J. Hydrogen Energy, 35, 4171 (2010).

    Article  CAS  Google Scholar 

  2. L. Schlapbach, Nature, 460, 809 (2009).

    Article  CAS  Google Scholar 

  3. M. J. Bleda-Martínez, J. M. Pérez, A. Linares-Solano, E. Morallón and D. Cazorla-Amorós, Carbon, 46, 1053 (2008).

    Article  Google Scholar 

  4. V. J. Surya, K. Iyakutti, N. Venkataramanan, H. Mizuseki and Y. Kawazoe, Int. J. Hydrog. Energy, 35, 2368 (2010).

    Article  CAS  Google Scholar 

  5. L. Pranevicius, E. Wirth, D. Milcius, M. Lelis, L. L. Pranevicius and A. Bacianskas, Appl. Surf. Sci., 255, 5971 (2009).

    Article  CAS  Google Scholar 

  6. S. H. Jhi, Y.-K. Kwon, K. Bradley, J.-C. P. Gabriel, Solid State Commun., 129(12), 769 (2004).

    Article  CAS  Google Scholar 

  7. V. J. Surya, K. Iyakutti, N. Venkataramanan, H. Mizuseki and Y. Kawazoe, Int. J. Hydrog. Energy, 35, 2368 (2010).

    Article  CAS  Google Scholar 

  8. J. S. Im, S. J. Kim, P. H. Kang and Y. S. Lee, J. Ind. Eng. Chem., 15, 699 (2009).

    Article  CAS  Google Scholar 

  9. M. J. Jung, J.W. Kim, J. S. Im, S. J. Park and Y. S. Lee, J. Ind. Eng. Chem., 15, 410 (2009).

    Article  CAS  Google Scholar 

  10. H. S. Kim, K. S. Cha, B.K. Yoo, T.G. Ryu, Y. S. Lee, C. S. Park and Y.-H. Kim, J. Ind. Eng. Chem., 16, 81 (2010).

    Article  CAS  Google Scholar 

  11. A. M. Rashidi, A. Nouralishahi, A. A. Khodadadi, Y. Mortazavi, A. Karimi and K. Kashefi, Int. J. Hydrog. Energy, 35, 9489 (2010).

    Article  CAS  Google Scholar 

  12. M. Hirscher and M. Becher, J. Nanosci. Nanotech., 3, 3 (2003).

    Article  CAS  Google Scholar 

  13. S. J. Park and B. J. Kim, J. Colloid Interface Sci., 311, 619 (2007).

    Article  Google Scholar 

  14. M. Hejazifar, S. Azizian, H. Sarikhani, Q. Li and D. Zhao, J. Anal. Appl. Pyrolysis, 92, 258 (2011).

    Article  CAS  Google Scholar 

  15. M. Z. Figueroa-Torres, A. Robau-Sanchez, L. Torre-Saenz and A. Aguilar-Elguezabal, Micropor. Mesopor. Mater., 98, 89 (2007).

    Article  Google Scholar 

  16. D. Dollimore and G. R. Heal, J. Colloid Interface Sci., 33, 508 (1970).

    Article  CAS  Google Scholar 

  17. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).

    Article  CAS  Google Scholar 

  18. R. Prakash, K. Fanselau, S. Ren, T. K. Manda, C. Kübe, H. Hahn and M. Fichtner, J. Nanotechnol., 4, 699 (2013).

    CAS  Google Scholar 

  19. P. Khiew, M. Ho, T. K. Tan, W. S. Chiu, R. Shamsudin, M. A. Abd-Hamid and C. H. Chia, Mater. Sci. Eng., 7, 86 (2013).

    Google Scholar 

  20. Y. Li and R. T. Yang, J. Am. Chem. Soc., 128, 8136 (2006).

    Article  CAS  Google Scholar 

  21. R. Zacharia, K. Y. Kim, A. K. M. Fazle Kibria and K. S. Nahm, Chem. Phys. Lett., 412, 369 (2005).

    Article  CAS  Google Scholar 

  22. J. Sun Im, J. Yun, S. C. Kang, S. Kyu Lee and Y. S. Lee, Appl. Surf. Sci., 258, 2749 (2012).

    Article  Google Scholar 

  23. S. E. Moradi, S. Amirmahmoodi and M. J. Baniamerian, J. Alloys Compd., 498, 168 (2010).

    Article  CAS  Google Scholar 

  24. M. Paik Suh, H. J. Park, T. K. Prasad and D. W. Lim, Chem. Rev., 112, 782 (2012).

    Article  Google Scholar 

  25. A. Anson, M. Benham, J. Jagiello, M. A. Callejas, A. M. Benito, W. K. Maser, A. Zuttel, P. Sudan and M. T. Martinez, Nanotechnology, 15, 1503 (2004).

    Article  CAS  Google Scholar 

  26. Serhiy Luzan, Materials for hydrogen storage and synthesis of new materials by hydrogenation, Doctoral Thesis, Umea University (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Moradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S.E. Low-cost metal oxide activated carbon prepared and modified by microwave heating method for hydrogen storage. Korean J. Chem. Eng. 31, 1651–1655 (2014). https://doi.org/10.1007/s11814-014-0096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0096-1

Keywords

Navigation