Skip to main content

Advertisement

Log in

Optimization of medium components using orthogonal arrays for γ-Linolenic acid production by Spirulina platensis

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work describes the medium optimization of γ-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L−1), NaNO3 (13.5 mg L−1) and MgSO4·7H2O (11.85 mg L−1) proved to be the best components for GLA production. The optimal pH for GLA production by the alga was 9.2. Based on the delta values, NaHCO3 showed the greatest effect on the GLA production of the various factors tested, followed in decreasing order by MgSO4·7H2O, NaNO3 and K2SO4. The maximum GLA yield obtained was 19.2 mgL−1 in the presence of optimum concentrations of NaHCO3 (20 g L−1), NaNO3 (3 g L−1), MgSO4·7H2O (0.5 g L−1) and K2SO4 (1.5 g L−1). Because of the slow growth rate of the algae, the practice of robust orthogonal array methods during the optimization of medium components can result in the production of an optimal biomass and a higher GLA yield for nutraceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bakshi, D. Mukherjee, A. Bakshi, A. K. Banerji and U. N. Das, Nutrition, 19, 305 (2003).

    Article  CAS  Google Scholar 

  2. R. B. Zurier, R.G. Rossetti, E.W. Jacobson, D. M. Demarco, N.Y. Liu, E. T. J. Emming, B. M. White and M. Laposata, Arthritis Rheum., 39, 1808 (1996).

    Article  CAS  Google Scholar 

  3. M. M. Engler, M. Schambelan, M. B. Engler, D. L. Ball and T. L. Goodfriend, Proc. Soc. Exp. Biol. Med., 218, 234 (1998).

    Article  CAS  Google Scholar 

  4. H. Keen, J. Payan, J. Allawi, J. Walker, G. A. Jamal, A. I. Weir, L. M. Henderson, E. A. Bissessar, P. J. Watkins and M. Sampson, Diabetes Care, 16, 8 (1993).

    Article  CAS  Google Scholar 

  5. D. Simon, P. A. Eng, S. Borelli, R. Kägi, C. Zimmermann, C. Zahner, J. Drewe, L. Hess, G. Ferrari, S. Lautenschlager, B. Wüthrich and P. Schmid-Grendelmeier, Adv. Ther., 1, 1 (2014).

    Google Scholar 

  6. M. Hirano, H. Mori, Y. Miura, N. Matsunaga, N. Nakamura and T. Matsunaga, Appl. Biochem. Biotechnol., 24, 183 (1990).

    Article  Google Scholar 

  7. Z. Cohen, M. Reungjitchachawali, W. Siangdung and M. Tanticharoen, J. Appl. Phycol., 5, 109 (1993).

    Article  CAS  Google Scholar 

  8. Z. Cohen, A. Vonshak and A. Richmond, Phytochemistry, 26, 2255 (1987).

    Article  CAS  Google Scholar 

  9. G. Mahajan and M. Kamat, Appl. Microbiol. Biotechnol., 43, 466 (1995).

    Article  CAS  Google Scholar 

  10. J. C. Carvalho, R. P. Bezerra, M. C. Matsudo and S. Sato, Advanced Biofuels and Bioproducts, Springer, New York (2013).

    Google Scholar 

  11. J.A.V. Costa, K. L. Cozza, L. Oliveira and G. Magagnin, World J. Microb. Biot., 17, 439 (2001).

    Article  CAS  Google Scholar 

  12. S. Ayachi, A. El Abed, W. Dhifi, and B. Marzouk, Ital. J. Biochem., 56, 166 (2007).

    CAS  Google Scholar 

  13. E. Danesi, C. de O Rangel-Yagui, J. de Carvalho and S. Sato, Biomass Bioenergy, 23, 261 (2002).

    Article  CAS  Google Scholar 

  14. H. J. Evans and G. J. Sorger, Annu. Rev. Plant Physiol., 17, 47 (1966).

    Article  CAS  Google Scholar 

  15. C. P. Xu, S.W. Kim, H. J. Hwang, J.W. Choi and J.W. Yun, Process. Biochem., 38, 1025 (2003).

    Article  CAS  Google Scholar 

  16. N. Daneshvar, A. Khataee, M. Rasoulifard and M. Pourhassan, J. Hazard. Mater., 143, 214 (2007).

    Article  CAS  Google Scholar 

  17. B. K. De, S. Chaudhury and D.K. Bhattacharyya, J. Am. Oil Chem. Soc., 76, 153 (1999).

    Article  CAS  Google Scholar 

  18. A. Vonshak, A. Abeliovich, S. Boussiba, S. Arad and A. Richmond, Biomass, 2, 175 (1982).

    Article  Google Scholar 

  19. Y. M. A. Fagiri, A. Salleh and S. A. F. El-Nagerabi, Afr. J. Biotechnol., 12, 5458 (2013).

    Google Scholar 

  20. K. Kim, D. Hoh, Y. Ji, H. Do, B. Lee and W. Holzapfel, Biomass. Bioenerg., 49, 181 (2013).

    Article  CAS  Google Scholar 

  21. K. H. Ogbonda, R. E. Aminigo and G. O. Abu, Bioresour. Technol., 98, 2207 (2007).

    Article  CAS  Google Scholar 

  22. F. Mus, J. P. Toussaint, K. E. Cooksey, M.W. Fields, R. Gerlach, B. M. Peyton and R. P. Carlson, Appl. Microbiol. Biotechnol., 97, 1 (2013).

    Article  Google Scholar 

  23. M. L. Bartley, W. J. Boeing, B. N. Dungan, F. O. Holguin and T. Schaub, J. Appl. Phycol., 1, 1 (2013).

    Google Scholar 

  24. H. Shimamatsu, Hydrobiologia, 512, 39 (2004).

    Article  Google Scholar 

  25. A. Dwivedi, R. Maheshwari and M. Syedy, Int. J. Rec. Biotechnol., 1, 17 (2013).

    Google Scholar 

  26. E. K. Kim, G.G. Choi, H. S. Kim, C.Y. Ahn and H. M. Oh, J. Appl. Phycol., 24, 743 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Reddy Ronda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronda, S.R., Parupudi, P.L.C., Vemula, S. et al. Optimization of medium components using orthogonal arrays for γ-Linolenic acid production by Spirulina platensis . Korean J. Chem. Eng. 31, 1839–1844 (2014). https://doi.org/10.1007/s11814-014-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0082-7

Keywords

Navigation