Skip to main content
Log in

Optimization of formic acid hydrolysis of corn cob in xylose production

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dilute acid pretreatment of lignocellulosic material is one of the significant steps in a biorefinery. We used response surface methodology to determine the important factors of formic acid concentration (2%–6% wt%), treatment time (30–150 min), reaction temperature (120–160 °C), and liquid to solid ratio (3–11 mL/g) on dilute acid hydrolysis of corn cob to produce xylose. A xylose yield of 81.6% and selectivity of 15.1 g/g were achieved under the optimal conditions (5% acid concentration, 150 min, 135 °C, and 7 mL/g liquid to solid ratio). The addition of trivalent salts (FeCl3, Fe(NO3)3, and Fe2(SO4)3) to the reaction system enhanced the xylose yield but decreased selectivity. The FeCl3 concentration over 0.75 mol/L had a negative effect on xylose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science, 311, 484 (2006).

    Article  CAS  Google Scholar 

  2. B. C. Saha, J. Ind. Microbiol. Biotechnol., 30, 279 (2003).

    Article  CAS  Google Scholar 

  3. T. B. Granstrom and M. Leisola, Agro Food Industry Hi-Tech, 20, 32 (2009).

    CAS  Google Scholar 

  4. W. Yang, P. Li, D. Bo, H. Chang, X. Wang and T. Zhu, Bioresour. Technol., 133, 361 (2013).

    Article  CAS  Google Scholar 

  5. A. Boussaid, J. Robinson, Y. j. Cai, D. J. Gregg and J. N. Saddler, Biotechnol. Bioeng., 64, 284 (1999).

    Article  CAS  Google Scholar 

  6. X. Pan, D. Xie, R.W. Yu, D. Lam and J.N. Saddler, Ind. Eng. Chem. Res., 46, 2609 (2007).

    Article  CAS  Google Scholar 

  7. A. A. Shatalov and H. Pereira, Carbohydr. Polym., 87, 210 (2012).

    Article  CAS  Google Scholar 

  8. Y. Zheng, H. M. Lin and G.T. Tsao, Biotechnol. Prog., 14, 890 (1998).

    Article  CAS  Google Scholar 

  9. A. S. Mamman, J. M. Lee, Y.C. Kim, I. T. Hwang, N. J. Park, Y.K. Hwang, J. S. Chang and J. S. Hwang, Biofuels, Bioproducts and Biorefining, 2, 438 (2008).

    Article  CAS  Google Scholar 

  10. A. Herrera, S. Téllez-Luis, J. Ramýrez and M. Vázquez, J. Cereal Sci., 37, 267 (2003).

    Article  CAS  Google Scholar 

  11. G. S. Wang, J.W. Lee, J.Y. Zhu and T.W. Jeffries, Appl. Biochem. Biotechnol., 163, 658 (2011).

    Article  CAS  Google Scholar 

  12. R. Zhang, X. Lu, Y. Sun, X. Wang and S. Zhang, J. Chem. Technol. Biotechnol., 86, 306 (2011).

    Article  CAS  Google Scholar 

  13. M. Jung, B. Schierbaum and H. Vogel, Chem. Eng. Technol., 23, 70 (2000).

    Article  CAS  Google Scholar 

  14. R.D. Sproull, The production of furfural in an extraction coupled reation system, Ph D. Thesis, Purdue University, Indiana, United States (1986).

    Google Scholar 

  15. K. J. Zeitsch, The chemistry and technology of furfural and its many by-products, Elsevier (2000).

    Google Scholar 

  16. K. E. Kang, D. H. Park and G. T. Jeong, Carbohydr. Polym., 92, 1321 (2013).

    Article  CAS  Google Scholar 

  17. L. Liu, J. Sun, C. Cai, S. Wang, H. Pei and J. Zhang, Bioresour. Technol., 100, 5865 (2009).

    Article  CAS  Google Scholar 

  18. Y. Sun, X. Lu, S. Zhang, R. Zhang and X. Wang, Bioresour. Technol., 102, 2936 (2011).

    Article  CAS  Google Scholar 

  19. R. Wang, Y. Sun, S. Zhang and X. Lu, Bioresour. Technol., 120, 290 (2012).

    Article  CAS  Google Scholar 

  20. K.-K. Cheng, J.-A. Zhang, E. Chavez and J.-P. Li, Appl. Microbiol. Biotechnol., 87, 411 (2010).

    Article  CAS  Google Scholar 

  21. A. Sluiter, Determination of structural carbonydrates and lignin in biomass, National Renewable Energy Laboratory (NREL), Golden, Co. (2011).

    Google Scholar 

  22. G. Garrote, H. Domýìnguez and J. C. Parajo, Process Biochem., 36, 571 (2001).

    Article  CAS  Google Scholar 

  23. D. Nabarlatz, A. Ebringerová and D. Montané, Carbohydr. Polym., 69, 20 (2007).

    Article  CAS  Google Scholar 

  24. J. Pinto, D. Cruz, A. Paiva, S. Pereira, P. Tavares, L. Fernandes and H. Varum, Construction and Building Materials, 34, 28 (2012).

    Article  Google Scholar 

  25. G. S. Wang, J.-W. Lee, J.Y. Zhu and T.W. Jeffries, Appl. Biochem. Biotechnol., 163, 658 (2010).

    Article  Google Scholar 

  26. D. Fengel and G. Wegener, Wood: Chemistry, ultrastructure, reactions, Walter de Gruyter (1983).

    Book  Google Scholar 

  27. T. Walther, P. Hensirisak and F. A. Agblevor, Bioresour. Technol., 76, 213 (2001).

    Article  CAS  Google Scholar 

  28. B. Lavarack, G. Griffin and D. Rodman, Biomass Bioenergy, 23, 367 (2002).

    Article  CAS  Google Scholar 

  29. Y. Lu and N. S. Mosier, Biotechnol. Bioeng., 101, 1170 (2008).

    Article  CAS  Google Scholar 

  30. E.V. Canettieri and G. J. d. M. Rocha, Bioresour. Technol., 98, 422 (2007).

    Article  CAS  Google Scholar 

  31. A. Cassales, P. B. de Souza-Cruz, R. Rech and M. A. Záchia Ayub, Biomass Bioenergy, 35, 4675 (2011).

    Article  CAS  Google Scholar 

  32. O. Yemis and G. Mazza, Bioresour. Technol., 109, 215 (2012).

    Article  CAS  Google Scholar 

  33. O. Akpinar, S. Sabanci, O. Levent and A. Sayaslan, Industrial Crops and Products, 40, 39 (2012).

    Article  CAS  Google Scholar 

  34. J. M. Dominguez, N. Cao, C. Gong and G. Tsao, Bioresour. Technol., 61, 85 (1997).

    Article  CAS  Google Scholar 

  35. G. Marcotullio, E. Krisanti, J. Giuntoli and W. De Jong, Bioresour. Technol., 102, 5917 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingli Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Li, P., Wang, X. et al. Optimization of formic acid hydrolysis of corn cob in xylose production. Korean J. Chem. Eng. 31, 1624–1631 (2014). https://doi.org/10.1007/s11814-014-0073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0073-8

Keywords

Navigation