Experimental investigation of mixing in a novel continuous chaotic mixer

Abstract

This paper presents and discusses results of an experimental study of laminar mixing of a highly viscous fluid (dough) in a continuous chaotic mixer. The mixer consists of an eccentric rotor that rotates co-axially within a stator, which results in chaotic advection. A dye injection technique was used to measure the mixing performance of the mixer. A mixing index was defined and computed by image processing of photographs of the exiting fluid from the mixer. Mixing characteristics were determined for constant as well as stepwise rotation of the rotor. Results revealed that mixing performance improves with increase in the rotational speed for constant rotational speed. The stepwise rotation case displayed better mixing performance than the constant speed case for stepwise changes of the amplitude as well as frequency of rotation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. K. Connelly and J. L. Kokini, J. Food Eng., 79, 956 (2007).

    Article  Google Scholar 

  2. 2.

    R. K. Connelly and J. L. Kokini, J. Food Process Eng., 22, 435 (1999).

    Article  Google Scholar 

  3. 3.

    S. Kumar and G. M. Homsy, Phys. Fluids, 8, 1774 (1996).

    Article  CAS  Google Scholar 

  4. 4.

    A. Lefevre, J. P. B. Mota, A. J. S. Rodrigo and E. Saatdjian, Int. J. Heat Fluid Flow, 24, 310 (2003).

    Article  Google Scholar 

  5. 5.

    R. H. Liu, M. A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, J. Microelectromech. Syst., 9, 1059 (2000).

    Article  Google Scholar 

  6. 6.

    W. L. Chien, H. Rising and J. M. Ottino, J. Fluid Mech., 170, 355 (1986).

    Article  CAS  Google Scholar 

  7. 7.

    K. C. Miles, B. Nagarajan and D. A. Zumbrunen, J. Fluids Eng., 117, 582 (1995).

    Article  CAS  Google Scholar 

  8. 8.

    C. Sadhan, J. Tjahjadi and J. M. Ottino, AIChE J., 40, 1769 (1994).

    Article  Google Scholar 

  9. 9.

    P. D. Swanson and J. M. Ottino, J. Fluid Mech., 213, 227 (1990).

    Article  CAS  Google Scholar 

  10. 10.

    T. C. Niederkorn and J. M. Ottino, J. Fluid Mech., 256, 243 (1993).

    Article  CAS  Google Scholar 

  11. 11.

    T. Atobe, M. Funakoshi and S. Inoue, Fluid Dynamics Research, 16, 115 (1995).

    Article  Google Scholar 

  12. 12.

    N. Acharya, M. Sen and H. Chang, Int. J. Heat Mass Transfer, 35, 2475 (1992).

    Article  CAS  Google Scholar 

  13. 13.

    A. Mokrani, C. Castelain and H. Peerhossaini, Int. J. Heat Mass Transfer, 40, 3089 (1997).

    Article  CAS  Google Scholar 

  14. 14.

    C. Chagny, C. Castelain and H. Peerhossaini, Appl. Therm. Eng., 20, 1615 (2000).

    Article  CAS  Google Scholar 

  15. 15.

    M. J. Clifford, S. M. Cox and M. D. Finn, Chem. Eng. Sci., 59, 3371 (2004).

    Article  CAS  Google Scholar 

  16. 16.

    H. Peerhossaini, C. Castelain and Y. Le Guer, Exp. Therm. Fluid Sci., 7(4), 333 (1993).

    Article  CAS  Google Scholar 

  17. 17.

    C. Castelain, A. Mokrani, Y. Guer and H. Peerhossaini, The European Journal of Mechanics-B/Fluids, 20, 205 (2001).

    Article  Google Scholar 

  18. 18.

    T. C. G. O. Fountain, D. V. Khakhar, I. Mezic and J. M. Ottino, Chem. Eng. Sci., 417, 265 (2000).

    CAS  Google Scholar 

  19. 19.

    D. J. Lamberto, M. M. Alvarez and F. J. Muzzio., Chem. Eng. Sci., 56, 4887 (2001).

    Article  CAS  Google Scholar 

  20. 20.

    G. Metcalfe and D. Lester, J. Food Eng., 95, 21 (2009).

    Article  Google Scholar 

  21. 21.

    J. Chaiken, R. Chevray, M. Tabor and Q. Tan, Proc. R. Soc. Lond. A, 408, 165 (1986).

    Article  CAS  Google Scholar 

  22. 22.

    J. Chaiken, C. K. Chu, M. Tabor and Q. M. Tan, Phys. Fluids, 30, 687 (1987).

    Article  Google Scholar 

  23. 23.

    H. Aref and S. Balachandar, Phys. Fluids, 29, 3515 (1986).

    Article  Google Scholar 

  24. 24.

    T. C. Niederkorn, M. Julio and J. M. Ottino, AIChE J., 40, 1782 (1994).

    Article  CAS  Google Scholar 

  25. 25.

    S. M. Hosseinalipour, A. Tohidi, M. Shokrpour and N. M. Nouri, Journal of Mechanical Science and Technology, 27(n5), 329 (2013).

    Article  Google Scholar 

  26. 26.

    D. M. Binding, M. A. Couch, K. S. Sujatha and M. F. Webster, J. Food Eng., 58, 111 (2003).

    Article  Google Scholar 

  27. 27.

    K. S. Sujatha, M. F. Webster, D. M. Binding and M.A. Couch, J. Food Eng., 57, 67 (2003).

    Article  Google Scholar 

  28. 28.

    K. M. Dhanasekharan and J. L. Kokini, J. Food Eng., 60, 421 (2003).

    Article  Google Scholar 

  29. 29.

    P. J. Cullen, Food mixing: Principles and applications, Wiley-Blackwell (2009).

    Google Scholar 

  30. 30.

    E. L. Paul, V. Atiemo-Obeng and S. M. Kresta, Handbook of industrial mixing: Science and practice, Wiley-Interscience (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mostafa Hosseinalipour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseinalipour, S.M., Tohidi, A., Mashaei, P.R. et al. Experimental investigation of mixing in a novel continuous chaotic mixer. Korean J. Chem. Eng. 31, 1757–1765 (2014). https://doi.org/10.1007/s11814-014-0071-x

Download citation

Keywords

  • Dough Mixer
  • Highly Viscous Fluids
  • Chaotic Advection
  • Mixing
  • Laminar