Advertisement

Korean Journal of Chemical Engineering

, Volume 31, Issue 10, pp 1757–1765 | Cite as

Experimental investigation of mixing in a novel continuous chaotic mixer

  • Seyyed Mostafa HosseinalipourEmail author
  • Amir Tohidi
  • Payam Rahim Mashaei
  • Arun Sadashiv Mujumdar
Transport Phenomena

Abstract

This paper presents and discusses results of an experimental study of laminar mixing of a highly viscous fluid (dough) in a continuous chaotic mixer. The mixer consists of an eccentric rotor that rotates co-axially within a stator, which results in chaotic advection. A dye injection technique was used to measure the mixing performance of the mixer. A mixing index was defined and computed by image processing of photographs of the exiting fluid from the mixer. Mixing characteristics were determined for constant as well as stepwise rotation of the rotor. Results revealed that mixing performance improves with increase in the rotational speed for constant rotational speed. The stepwise rotation case displayed better mixing performance than the constant speed case for stepwise changes of the amplitude as well as frequency of rotation.

Keywords

Dough Mixer Highly Viscous Fluids Chaotic Advection Mixing Laminar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Connelly and J. L. Kokini, J. Food Eng., 79, 956 (2007).CrossRefGoogle Scholar
  2. 2.
    R. K. Connelly and J. L. Kokini, J. Food Process Eng., 22, 435 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Kumar and G. M. Homsy, Phys. Fluids, 8, 1774 (1996).CrossRefGoogle Scholar
  4. 4.
    A. Lefevre, J. P. B. Mota, A. J. S. Rodrigo and E. Saatdjian, Int. J. Heat Fluid Flow, 24, 310 (2003).CrossRefGoogle Scholar
  5. 5.
    R. H. Liu, M. A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, J. Microelectromech. Syst., 9, 1059 (2000).CrossRefGoogle Scholar
  6. 6.
    W. L. Chien, H. Rising and J. M. Ottino, J. Fluid Mech., 170, 355 (1986).CrossRefGoogle Scholar
  7. 7.
    K. C. Miles, B. Nagarajan and D. A. Zumbrunen, J. Fluids Eng., 117, 582 (1995).CrossRefGoogle Scholar
  8. 8.
    C. Sadhan, J. Tjahjadi and J. M. Ottino, AIChE J., 40, 1769 (1994).CrossRefGoogle Scholar
  9. 9.
    P. D. Swanson and J. M. Ottino, J. Fluid Mech., 213, 227 (1990).CrossRefGoogle Scholar
  10. 10.
    T. C. Niederkorn and J. M. Ottino, J. Fluid Mech., 256, 243 (1993).CrossRefGoogle Scholar
  11. 11.
    T. Atobe, M. Funakoshi and S. Inoue, Fluid Dynamics Research, 16, 115 (1995).CrossRefGoogle Scholar
  12. 12.
    N. Acharya, M. Sen and H. Chang, Int. J. Heat Mass Transfer, 35, 2475 (1992).CrossRefGoogle Scholar
  13. 13.
    A. Mokrani, C. Castelain and H. Peerhossaini, Int. J. Heat Mass Transfer, 40, 3089 (1997).CrossRefGoogle Scholar
  14. 14.
    C. Chagny, C. Castelain and H. Peerhossaini, Appl. Therm. Eng., 20, 1615 (2000).CrossRefGoogle Scholar
  15. 15.
    M. J. Clifford, S. M. Cox and M. D. Finn, Chem. Eng. Sci., 59, 3371 (2004).CrossRefGoogle Scholar
  16. 16.
    H. Peerhossaini, C. Castelain and Y. Le Guer, Exp. Therm. Fluid Sci., 7(4), 333 (1993).CrossRefGoogle Scholar
  17. 17.
    C. Castelain, A. Mokrani, Y. Guer and H. Peerhossaini, The European Journal of Mechanics-B/Fluids, 20, 205 (2001).CrossRefGoogle Scholar
  18. 18.
    T. C. G. O. Fountain, D. V. Khakhar, I. Mezic and J. M. Ottino, Chem. Eng. Sci., 417, 265 (2000).Google Scholar
  19. 19.
    D. J. Lamberto, M. M. Alvarez and F. J. Muzzio., Chem. Eng. Sci., 56, 4887 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Metcalfe and D. Lester, J. Food Eng., 95, 21 (2009).CrossRefGoogle Scholar
  21. 21.
    J. Chaiken, R. Chevray, M. Tabor and Q. Tan, Proc. R. Soc. Lond. A, 408, 165 (1986).CrossRefGoogle Scholar
  22. 22.
    J. Chaiken, C. K. Chu, M. Tabor and Q. M. Tan, Phys. Fluids, 30, 687 (1987).CrossRefGoogle Scholar
  23. 23.
    H. Aref and S. Balachandar, Phys. Fluids, 29, 3515 (1986).CrossRefGoogle Scholar
  24. 24.
    T. C. Niederkorn, M. Julio and J. M. Ottino, AIChE J., 40, 1782 (1994).CrossRefGoogle Scholar
  25. 25.
    S. M. Hosseinalipour, A. Tohidi, M. Shokrpour and N. M. Nouri, Journal of Mechanical Science and Technology, 27(n5), 329 (2013).CrossRefGoogle Scholar
  26. 26.
    D. M. Binding, M. A. Couch, K. S. Sujatha and M. F. Webster, J. Food Eng., 58, 111 (2003).CrossRefGoogle Scholar
  27. 27.
    K. S. Sujatha, M. F. Webster, D. M. Binding and M.A. Couch, J. Food Eng., 57, 67 (2003).CrossRefGoogle Scholar
  28. 28.
    K. M. Dhanasekharan and J. L. Kokini, J. Food Eng., 60, 421 (2003).CrossRefGoogle Scholar
  29. 29.
    P. J. Cullen, Food mixing: Principles and applications, Wiley-Blackwell (2009).CrossRefGoogle Scholar
  30. 30.
    E. L. Paul, V. Atiemo-Obeng and S. M. Kresta, Handbook of industrial mixing: Science and practice, Wiley-Interscience (2003).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Seyyed Mostafa Hosseinalipour
    • 1
    Email author
  • Amir Tohidi
    • 1
  • Payam Rahim Mashaei
    • 1
  • Arun Sadashiv Mujumdar
    • 2
    • 3
  1. 1.CFD and CAE Laboratory, Department of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran
  2. 2.Institute of Chemical TechnologyMumbaiIndia
  3. 3.Chemical & Biomolecular Engineering DepartmentHong Kong University of Science & TechnologyHong KongChina

Personalised recommendations