Skip to main content
Log in

Devolatilization characteristics of high volatile coal in a wire mesh reactor

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A wire mesh reactor was used to investigate the devolatilization process of coal particle during entrained flow gasification. Coal from Indonesia East Kalimantan mine, which has high moisture and high volatile matter, was chosen as a sample. Experiments were carried out at the heating rate of 1,000 °C/s and isothermal condition was kept at peak temperature under atmospheric pressure. The char, tar and gas formation characteristics of the coal as well as the composition of the gas components at peak temperatures were determined. The experimental results showed that devolatilization process terminated when temperature reached above 1,100 °C. Most of tar was formed at about 800 °C, while the rate of tar formation decreased gradually as the temperature increased. CH4 was observed at temperatures above 600 °C, whereas H2 was detected above 1,000 °C. The amount of formed gases such as H2, CO, CH4 and C n H m increased as the temperature increased. From the characteristics of devolatilization with residence time, it was concluded that devolatilization terminated within about 0.7 second when the temperature reached 1,000 °C. As the operating temperature in an entrained flow gasifier is higher than ash melting temperature, it is expected that the devolatilization time of high volatile coal should be less than one second in an entrained flow gasifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tremel and H. Spliethoff, Fuel, 103, 663 (2013).

    Article  CAS  Google Scholar 

  2. A. Tremel, T. Haselsteiner, C. Kunze and H. Spliethoff, Appl. Energy, 92, 279 (2012).

    Article  CAS  Google Scholar 

  3. L. Chen, C. Zeng, X. Guo, Y. Mao, Y. Zhang, X. Zhang, W. Li, Y. Long, H. Zhu, B. Eiteneer and V. Zamansky, Fuel Process Technol., 91, 848 (2010).

    Article  CAS  Google Scholar 

  4. M. S. Masnadi, R. Habibi, J Kopyscinski, J. M. Hill, X. Bi and C. J. Lim, Fuel, 117, 1204 (2014)

    Article  CAS  Google Scholar 

  5. K. Jamil, J. I. Hayashi and C. Z. Li, Fuel, 83, 833 (2004).

    Article  CAS  Google Scholar 

  6. G. D. Nola, W. D. Jong and H. Spliethoff, Fuel Process Technol., 90, 388 (2009).

    Article  Google Scholar 

  7. R. Loison and R. Chauvin, Chim. Ind., 91, 269 (1964).

    CAS  Google Scholar 

  8. D. B. Anthony, J. B. Howard, H. C. Hottel and H. P. Meissner, Fuel, 55, 121 (1976).

    Article  CAS  Google Scholar 

  9. M. R. Khan, Fuel, 68, 1522 (1989).

    Article  CAS  Google Scholar 

  10. S. Niksa, W. B. Russel and D. A. Saville, Fuel, 61, 1207 (1982).

    Article  CAS  Google Scholar 

  11. S. Niksa, W. B. Russel and D. A. Saville, Nineteenth Symposium (International) on Combustion, 1151 (1982).

    Google Scholar 

  12. J. R. Gibbins and R. Kandiyoti, Fuel, 68, 895 (1989).

    Article  CAS  Google Scholar 

  13. C. J. Hindmarsh, K. M. Thomas, W. X. Wang, H.Y. Cai, A. J. Güell, D. R. Dugwell and R. Kandiyoti, Fuel, 74, 1185 (1995).

    Article  CAS  Google Scholar 

  14. C. Sathe, J.-I. Hayashi and C. Z. Li, Fuel, 81, 1171 (2002).

    Article  CAS  Google Scholar 

  15. C. Zeng, H. Wu, J.-I. Hayashi and C.-Z. Li, Fuel, 84, 1586 (2005).

    CAS  Google Scholar 

  16. J. R. Gibbins, R. A.V. King, R. J. Woods and R. Kandiyoti, Review of Scientific Instruments, 60, 1129 (1989).

    Article  CAS  Google Scholar 

  17. C. Zeng, L. Chen, G. Liu, W. Li and B. Huang, Review of Scientific Instruments, 79, 084102 (2008).

    Article  Google Scholar 

  18. E. B. H. Quah and C.-Z. Li, Appl. Catal. A: Gen., 258, 63 (2004).

    Article  CAS  Google Scholar 

  19. J.Y. Lim, I. N. Chatzakis, A. Magaritis, H.Y. Cai, D. R. Dugwell and R. Kandiyoti, Fuel, 76, 1327 (1997).

    Article  CAS  Google Scholar 

  20. Z. S. Gonenc, J. R. Gibbins, L. E. Katheklakis and R. Kandiyoti, Fuel, 69, 383 (1990).

    Article  CAS  Google Scholar 

  21. M. A. Serio, D.G. Hamblen, J. R. Markham and P.R. Solomon, Energy Fuels, 1, 138 (1987).

    Article  CAS  Google Scholar 

  22. D.-W. Lee, J.-S. Bae, S.-J. Park, Y. J. Lee, J.-C. Hong and Y.-C. Choi, Ind. Eng. Chem. Res., 51, 13580 (2012).

    Article  CAS  Google Scholar 

  23. H. Shui, M. Zheng, Z. Wang and X. Li, Fuel, 86, 1396 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Goo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ra, H.W., Seo, M.W., Yoon, S.J. et al. Devolatilization characteristics of high volatile coal in a wire mesh reactor. Korean J. Chem. Eng. 31, 1570–1576 (2014). https://doi.org/10.1007/s11814-014-0061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0061-z

Keywords

Navigation