Skip to main content
Log in

Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3×105 L·m−2·h−1·Pa−1). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Senatore, L. Finzetto and E. Perea, Rem-Revista Escola De Minas, 60, 175 (2007).

    Article  Google Scholar 

  2. R. Sangeetha, R. Kumar, M. Doble and R. Venkatesan, Colloids Surf. B-Biointerfaces, 79, 524 (2010).

    Article  CAS  Google Scholar 

  3. S. Trigwell and G. Selvaduray, J. Mater. Process. Technol., 166, 30 (2005).

    Article  CAS  Google Scholar 

  4. J. C. Stinville, P. Villechaise, C. Templier, J. P. Riviere and M. Drouet, Surf. Coat. Technol., 204, 1947 (2010).

    Article  CAS  Google Scholar 

  5. L. Ceschini, C. Chiavari, E. Lanzoni and C. Martini, Mater. Design, 38, 154 (2012).

    Article  CAS  Google Scholar 

  6. P. M.D. Silva, H. F.G. de Abreu, V. H. C. de Albuquerque, P. D. Neto and J. Tavares, Mater. Design, 32, 605 (2011).

    Article  CAS  Google Scholar 

  7. T. M. Sridhar, U. Kamachi Mudali and M. Subbaiyan, Corros. Sci., 45, 237 (2003).

    Article  Google Scholar 

  8. J. A. Calles, R. Sanz and D. Alique, Int. J. Hydrogen Energy, 37, 6030 (2012).

    Article  CAS  Google Scholar 

  9. M. L. Bosko, J. F. Munera, E. A. Lombardo and L. M. Cornaglia, J. Membr. Sci., 364, 17 (2010).

    Article  CAS  Google Scholar 

  10. T. A. Peters, W. M. Tucho, A. Ramachandran, M. Stange, J. C. Walmsley, R. Holmestad, A. Borg and R. Bredesen, J. Membr. Sci., 326, 572 (2009).

    Article  CAS  Google Scholar 

  11. H.L. Wang, M. A. Sweikart and J. A. Turner, J. Power Sources, 115, 243 (2003).

    Article  CAS  Google Scholar 

  12. Y. Wang and D. O. Northwood, J. Power Sources, 165, 293 (2007).

    Article  CAS  Google Scholar 

  13. Y. Fu, G. Q. Lin, M. Hou, B. Wu, Z. G. Shao and B. L. Yi, Int. J. Hydrogen Energy, 34, 405 (2009).

    Article  CAS  Google Scholar 

  14. A. Brunetti, G. Barbieri, E. Drioli, K. H. Lee, B. Sea and D.W. Lee, Chem. Eng. Process., 46, 119 (2007).

    Article  CAS  Google Scholar 

  15. A. Brunetti, G. Barbieri, E. Drioli, T. Granato and K.H. Lee, Chem. Eng. Sci., 62, 5621 (2007).

    Article  CAS  Google Scholar 

  16. A. Basile, P. Pinacci, A. Iulianelli, M. Broglia, F. Drago, S. Liguori, T. Longo and V. Calabro, Int. J. Hydrogen Energy, 36, 2029 (2011).

    Article  CAS  Google Scholar 

  17. S.-E. Nam, S.-H. Lee and K.-H. Lee, J. Membr. Sci., 153, 163 (1999).

    Article  CAS  Google Scholar 

  18. H. Gao, Y. S. Lin, Y. Li and B. Zhang, Ind. Eng. Chem. Res., 43, 6920 (2004).

    Article  CAS  Google Scholar 

  19. M.W. J. Luiten-Olieman, L. Winnubst, A. Nijmeijer, M. Wessling and N. E. Benes, J. Membr. Sci., 370, 124 (2011).

    Article  CAS  Google Scholar 

  20. M.W. J. Luiten-Olieman, M. J. T. Raaijmakers, L. Winnubst, M. Wessling, A. Nijmeijer and N. E. Benes, Scripta Mater., 65, 25 (2011).

    Article  CAS  Google Scholar 

  21. L.-Y. Yu, Z.-L. Xu, H.-M. Shen and H. Yang, J. Membr. Sci., 337, 257 (2009).

    Article  CAS  Google Scholar 

  22. T.-S. Chung and Z.-L. Xu, J. Membr. Sci., 147, 35 (1998).

    Article  CAS  Google Scholar 

  23. S. P. Deshmukh and K. Li, J. Membr. Sci., 150, 75 (1998).

    Article  CAS  Google Scholar 

  24. L.-F. Han, Z.-L. Xu, Y. Cao, Y.-M. Wei and H.-T. Xu, J. Membr. Sci., 372, 154 (2011).

    Article  CAS  Google Scholar 

  25. H. K. Kuiken, J. Fluid Mech., 214, 503 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Liang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, XH., Bai, Y., Cao, Y. et al. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber. Korean J. Chem. Eng. 31, 1438–1443 (2014). https://doi.org/10.1007/s11814-014-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0060-0

Keywords

Navigation