Skip to main content

Advertisement

Log in

Ionic liquids [EMIM][BF4], [EMIM][Otf] and [BMIM][Otf] as corrosion inhibitors for CO2 capture applications

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine systems. Carbon steel 1020, which is widely used as a construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capabilities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤3% in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. Subsequent calculation of corrosion rate via Tafel fit was performed. The experimental findings suggest that the corrosion rate is significantly dependent on the process parameters, such as the CO2 loading and the presence of oxygen. In addition, the value of the corrosion rate is sensitive to the type of ionic liquid added. Moreover, the results show that ionic liquids possess the ability of suppressing severe operational problems of corrosion in typical CO2 capture plants to a reasonable extent (≥50%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Heller, G. A. Keoleian and T. A. Volk, Biomass Bioenergy, 25, 147 (2003).

    Article  CAS  Google Scholar 

  2. K.G. Knudsen, B. H. Cooper and H. Topsoe, Appl. Catal. A: Gen., 189(2), 205 (1999).

    Article  CAS  Google Scholar 

  3. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Int. J. Greenhouse Gas Control, 2, 9 (2008).

    Article  CAS  Google Scholar 

  4. S. M. Benson and D. R. Cole, Element., 4, 325 (2008).

    Article  CAS  Google Scholar 

  5. H. Chang and C. M. Shih, Sep. Sci. Technol., 40, 877 (2005).

    Article  CAS  Google Scholar 

  6. M. S. Jassim and G. T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2465 (2006).

    Article  CAS  Google Scholar 

  7. A. Bello and R. O. Idem, Ind. Eng. Chem. Res., 45(8), 2569 (2006).

    Article  CAS  Google Scholar 

  8. G. S. Goff and G. T. Rochelle, Ind. Eng. Chem. Res., 43(20), 6400 (2004).

    Article  CAS  Google Scholar 

  9. L. Kucka, I. Müller, E. Y. Kenig and A. Górak, Chem. Eng. Sci., 58(16), 3571 (2003).

    Article  CAS  Google Scholar 

  10. I. Ahamad, C. Gupta, R. Prasad and M. A. Quraishi, J. Appl. Electrochem., 40(12), 2171 (2010).

    Article  CAS  Google Scholar 

  11. B. Hamah-Ali, B. Si Al, R. Yusoff and M. Kheirodin Aroua, Int. J. Electrochem. Sci., 6, 181 (2011).

    Google Scholar 

  12. K. F. Khaled, A. El-mghraby, O. B. Ibrahim, O. A. Elhabib and A. M. I. Magdy, J. Mater. Environ. Sci., 1(3), 139 (2010).

    CAS  Google Scholar 

  13. J. Gao, S. Wang, C. Sun, B. Zhao and C. Chen, Ind. Eng. Chem. Res., 51(19), 6714 (2012).

    Article  CAS  Google Scholar 

  14. I. R. Soosaiprakasam and A. Veawab, Energy Procedia., 1, 225 (2009).

    Article  CAS  Google Scholar 

  15. N. Kladkaew, R. Idem, P. Tontiwachwuthikul and C. Saiwan, Ind. Eng. Chem. Res., 48(23), 10169 (2009).

    Article  CAS  Google Scholar 

  16. M. Hasib-ur-Rahman, M. Siaj and F. Larachi, Chem. Eng. Process., 49, 313 (2010).

    Article  CAS  Google Scholar 

  17. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38, 3917 (1999).

    Article  CAS  Google Scholar 

  18. J. F. Brennecke and E. J. Maginn, AIChE J., 47, 2384 (2001).

    Article  CAS  Google Scholar 

  19. T. P. T. Pham, C.W. Cho and Y. S. Yun, Water Res., 44, 352 (2010).

    Article  CAS  Google Scholar 

  20. T. Tsuda and C. L. Hussey, Interface, 16, 42 (2007).

    Google Scholar 

  21. S. Zhang, N. Sun, X. He, X. Lu and X. Zhang, J. Phys. Chem. Ref. Data, 35(4), 1475 (2006).

    Article  CAS  Google Scholar 

  22. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 40(2), 4771 (2001).

    Article  CAS  Google Scholar 

  23. I. R. Soosaiprakasam and A. Veawab, Int. J. Greenhouse Gas Control, 2, 553 (2008).

    Article  CAS  Google Scholar 

  24. M. Hasib-ur-Rahman, H. Bouteldja, P. Fongarland, M. Siaj and L. Larachi, Ind. Eng. Chem. Res., 51(26), 8711 (2012).

    Article  CAS  Google Scholar 

  25. S. Martin, H. Lepaumier, D. Picq, J. Kittel, T. de Bruin and A. Faraj, P. L. Carrette, Ind. Eng. Chem. Res., 51(8), 6283 (2012).

    Article  CAS  Google Scholar 

  26. M. A. M. Ibrahim, M. Messali, Z. Moussa, A.Y. Alzahrani, S. N. Alamry and B. Hammouti, Port. Electrochim. Acta, 29, 375 (2011).

    Article  CAS  Google Scholar 

  27. M. Uerdingen, C. Treber, M. Balser, Schmitt and C. Werner, Green Chem., 7, 321 (2005).

    Article  CAS  Google Scholar 

  28. I. Perissi, U. Bardi, S. Caporali and A. Lavacchi, Corros. Sci., 48, 2349 (2006).

    Article  CAS  Google Scholar 

  29. J. Kittela, R. Idemb, D. Gelowitzb, P. Tontiwachthikulb, G. Parraina and A. Bounneaua, Energie Procedia, 1, 791 (2009).

    Article  Google Scholar 

  30. M. Hasib-ur-Rahman and F. Larachi, Ind. Eng. Chem. Res., 52(49), 17682 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzedine Abbaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acidi, A., Hasib-ur-Rahman, M., Larachi, F. et al. Ionic liquids [EMIM][BF4], [EMIM][Otf] and [BMIM][Otf] as corrosion inhibitors for CO2 capture applications. Korean J. Chem. Eng. 31, 1043–1048 (2014). https://doi.org/10.1007/s11814-014-0025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0025-3

Keywords

Navigation