Skip to main content

Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method

Abstract

A major challenge in the application of proton exchange membrane fuel cells (PEMFCs) is water management, with the flooding of electrodes as the main issue. The Lattice-Boltzmann method (LBM) is a relatively new technique that is superior in modeling the dynamic interface of multiphase fluid flow in complex microstructures such as non-homogeneous and anisotropic porous media of PEMFC electrodes. In this study, the dynamic behavior of a water droplet during removal from gas diffusion layer (GDL) of a PEMFC electrode with interdigitated flow field is simulated using LBM. The effects of GDL wettability and its spanwise and transverse gradients on the removal process are investigated. The results demonstrate great influence of wettability and its spanwise and transverse gradients on the dynamic behavior of droplets during the removal process. Although increasing the hydrophobicity of GDL results in better droplet removal, its increase beyond a critical value does not show a significant effect.

This is a preview of subscription content, access via your institution.

References

  1. T. H. Yang, G. Park, P. Pugazhendhi, W. Y. Lee and C. S. Kim, Korean J. Chem. Eng., 19, 417 (2002).

    Article  CAS  Google Scholar 

  2. J. E. Dawes, N. S. Hanspal, O.A. Family and A. Turan, Chem. Eng. Sci., 64, 2781 (2009).

    Article  CAS  Google Scholar 

  3. K. Jiao and X. Li, Prog. Energ. Combus. Sci., 37, 221 (2011).

    Article  CAS  Google Scholar 

  4. Y. Wang, K. S. Chen, J. Mishler, S.C. Cho and X. C. Adroher, Appl. Energy, 88, 981 (2011).

    Article  CAS  Google Scholar 

  5. M. A. Khan, B. Sundén and J. Yuan, J. Power Sources, 196, 7899 (2011).

    Article  CAS  Google Scholar 

  6. S. Succi, The lattice boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation, Clarendon Press, Oxford (2001).

    Google Scholar 

  7. Y. Gao, X. Zhang, P. Rama, R. Chen, H. Ostadi and K. Jiang, Comput. Math. Appl., 65, 891 (2013).

    Article  Google Scholar 

  8. L. Hao and P. Cheng, J. Power Sources, 195, 3870 (2010).

    Article  CAS  Google Scholar 

  9. L. Hao and P. Cheng, J. Heat Mass Transfer, 53, 1908 (2010).

    Article  CAS  Google Scholar 

  10. L. Hao and P. Cheng, Int. J. Heat Mass Transfer, 55, 133 (2011).

    Article  CAS  Google Scholar 

  11. T. Koido, T. Furusawa and K. Moriyama, J. Power Sources, 175, 127 (2008).

    Article  CAS  Google Scholar 

  12. P. Mukherjee, C.Y. Wang and Q. Kang, Electrochim. Acta, 54, 6861 (2009).

    Article  CAS  Google Scholar 

  13. X. D. Niu, T. Munekata, S. A. Hyodo and K. Suga, J. Power Sources, 172, 542 (2007).

    Article  CAS  Google Scholar 

  14. Y. Tabe, Y. Lee, T. Chikahisa and M. Kozakai, J. Power Sources, 193, 24 (2009).

    Article  CAS  Google Scholar 

  15. Y. Ben Salah, Y. Tabe and Y. Chikahisa, J. Power Sources, 199, 85 (2012).

    Article  CAS  Google Scholar 

  16. Y. Ben Salah, Y. Tabe and Y. Chikahisa, Energy Procedia, 28, 125 (2012).

    Article  CAS  Google Scholar 

  17. L. Chen, H. B. Luan, Y. L. He and W. Q. Tao, Int. J. Therm. Sci., 5, 132 (2012).

    Article  CAS  Google Scholar 

  18. B. Han and H. Meng, J. Power Sources, 217, 268 (2012).

    Article  CAS  Google Scholar 

  19. B. Han, J. Yu and H. Meng, J. Power Sources, 202, 175 (2012).

    Article  CAS  Google Scholar 

  20. L. Hao and P. Cheng, J. Power Sources, 190, 435 (2009).

    Article  CAS  Google Scholar 

  21. J. Park and X. Li, J. Power Sources, 178, 248 (2008).

    Article  CAS  Google Scholar 

  22. J. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, 4595 (2003).

    Article  CAS  Google Scholar 

  23. F.Y. Zhang, X.G. Yang and C.Y. Wang, J. Electrochem. Soc., 153, A225 (2006).

    Article  CAS  Google Scholar 

  24. M.M. Mench, Fuel Cell Engines, Wiley, New Jersey (2008).

    Book  Google Scholar 

  25. M.M. Daino and S.G. Kandlikar, Int. J. Hydrog. Energy, 37, 5180 (2012).

    Article  CAS  Google Scholar 

  26. P. Zhou and C.W. Wu, J. Power Sources, 195, 1408 (2010).

    Article  CAS  Google Scholar 

  27. P. K. Sinha and C.Y. Wang, Electrochim. Acta, 52, 7936 (2007).

    Article  CAS  Google Scholar 

  28. P. K. Sinha and C. Y. Wang, Chem. Eng. Sci., 63, 1081 (2008).

    Article  CAS  Google Scholar 

  29. S. Chen and G. D. Doolen, Annu. Rev. Fluid. Mech., 30, 329 (1998).

    Article  Google Scholar 

  30. X. Shan and H. Chen, Phys. Rev. E, 47, 1815 (1993).

    Article  Google Scholar 

  31. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 94, 511 (1954).

    Article  CAS  Google Scholar 

  32. A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A, 43, 4320 (1991).

    Article  CAS  Google Scholar 

  33. M.R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).

    Article  CAS  Google Scholar 

  34. A. A. Mohamad, Lattice boltzmann method-fundamentals and engineering applications with computer codes, Springer, Heidelberg (2011).

    Google Scholar 

  35. M. C. Sukop and D. T. Thorne, Lattice boltzmann modeling, an introduction for geoscientists and engineers, Springer, Heidelberg (2007).

    Google Scholar 

  36. P. Yuan and L. Schaefer, Phys. Fluids, 18, 042101 (2006).

    Article  CAS  Google Scholar 

  37. T. V. Nguyen, J. Electrochem. Soc., 143, 103 (1996).

    Article  Google Scholar 

  38. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

  39. E.C. Kumbur, K.Y. Sharp and M.M. Mench, J. Power Sources, 168, 356 (2007).

    Article  CAS  Google Scholar 

  40. G. Velayutham, J. Kaushik, N. Rajalakshmi and K. S. Dhathathreyan, Fuel Cells, 7, 314 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Akbari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molaeimanesh, G., Akbari, M.H. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method. Korean J. Chem. Eng. 31, 598–610 (2014). https://doi.org/10.1007/s11814-013-0282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0282-6

Keywords

  • Multiphase Flow
  • Water Droplet
  • Proton Exchange Membrane Fuel Cell
  • Lattice-Boltzmann Method
  • GDL Microstructure