Skip to main content
Log in

Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: Experimental and mass transfer studies

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experimental and mass transfer studies of oxygen transfer to cassava starch solution in an aerated, well-mixed bioreactor of 2 L have been carried out. The volumetric mass transfer coefficient was estimated and parametric studies were performed to study the effect of process variables of stirring rate, aeration rate, concentration of starch and temperature on the volumetric mass transfer coefficient. From the experimental results, it is evident that the first two and the last variables are directly proportional to the volumetric mass transfer coefficient. However, the volumetric mass transfer coefficient is inversely proportional to the concentration of the starch. Also, the saturation dissolved oxygen concentration is greatly affected by temperature and starch solution concentration. Whereas, stirring and aeration rates have neutral impacts on saturation dissolved oxygen concentration. Simulated data generated from obtained volumetric mass transfer coefficient agrees well with the experimental data, which indicates the accuracy of the coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mojović, D. Pejin, M. Rakin, J. Pejin, S. Nikoli and A. Djukić-Vuković, Renewable and Sustainable Energy Rev., 16, 6040 (2012).

    Article  Google Scholar 

  2. F. Talebnia, D. Karakashev and I. Angelidaki, Bioresour. Technol., 101, 4744 (2010).

    Article  CAS  Google Scholar 

  3. M. E. E. Abashar, Comput. Chem. Eng., 37, 172 (2012).

    Article  CAS  Google Scholar 

  4. M. Balat, H. Balat and C. Öz, Prog. Energy Combust. Sci., 34, 551 (2008).

    Article  CAS  Google Scholar 

  5. K. A. Gray, L. Zhao and M. Emptage, Curr. Opin. Chem. Biol., 10, 141 (2006).

    Article  CAS  Google Scholar 

  6. A. Demirbas, Energy Convers. Manage., 50, 2239 (2009).

    Article  CAS  Google Scholar 

  7. M. Hashem and S.M. I. Darwish, Biomass Bioenergy, 34, 953 (2010).

    Article  CAS  Google Scholar 

  8. F. F. Furlan, C. B. B. Costa, G. d. C. Fonseca, R. d. P. Soares, A. R. Secchi, A. J. G. da Cruz and R. d. C. Giordano, Comput. Chem. Eng., 43, 1 (2012).

    Article  CAS  Google Scholar 

  9. S. I. Njoku, B.K. Ahring and H. Uellendahl, Bioresour. Technol., 124, 105 (2012).

    Article  CAS  Google Scholar 

  10. M. O. S. Dias, A.V. Ensinas, S. A. Nebra, R.M. Filho, C. E.V. Rossell and M. R.W. Maciel, Chem. Eng. Res. Des., 87, 1206 (2009).

    Article  CAS  Google Scholar 

  11. A. Limayem and S.C. Ricke, Prog. Energy Combust. Sci., 38, 449 (2012).

    Article  CAS  Google Scholar 

  12. C. Virunanon, C. Ouephanit, V. Burapatana and W. Chulalaksananukul, J. Cleaner Prod., 39, 273 (2013).

    Article  CAS  Google Scholar 

  13. P. Panaka and A. Yudiarto, New development of ethanol industry in indonesia, Asian Science & Technology Seminar, Jakarta (2007).

    Google Scholar 

  14. W. Sumaryono, Technology development in bioethanol production in indonesia, The Asian Science and Technology Seminar, Jakarta (2007).

    Google Scholar 

  15. T. Silalertruksa and S.H. Gheewala, Energy Policy, 38, 7476 (2010).

    Article  Google Scholar 

  16. K. Sriroth, K. Piyachomkwan, S. Wanlapatit and S. Nivitchanyong, Fuel, 89, 1333 (2010).

    Article  CAS  Google Scholar 

  17. S. Shanavas, G. Padmaja, S. N. Moorthy, M. S. Sajeev and J.T. Sheriff, Biomass Bioenergy, 35, 901 (2011).

    Article  CAS  Google Scholar 

  18. L. H. Ziska, G.B. Runion, M. Tomecek, S. A. Prior, H. A. Torbet and R. Sicher, Biomass Bioenergy, 33, 1503 (2009).

    Article  CAS  Google Scholar 

  19. N. K. Aggarwal, P. Nigam, D. Singh and B. S. Yadav, World J. Microbiol. Biotechnol., 17, 783 (2001).

    Article  CAS  Google Scholar 

  20. E. I. Ohimain, Energy Sustainable Dev., 16, 352 (2012).

    Article  Google Scholar 

  21. L. L. Zamora, J. A.G. Calderón, E. T. Vázquez and E. B. Reynoso, J. Mex. Chem. Soc., 54(4), 198 (2010).

    CAS  Google Scholar 

  22. R. M. Collares, L. V. S. Miklasevicius, M. M. Bassaco, N. P. G. Salau, M. A. Mazutti, D. A. Bisognin and L.M. Terra, J. Zhejiang Univ., Sci., B, 13(7), 579 (2012).

    Article  CAS  Google Scholar 

  23. L. Kuiper, B. Ekmekci, C. Hamelinck, W. Hettinga, S. Meyer and K. Koop, Bio-ethanol from cassava, EcofysProject number: PBIONL062937 (2007).

    Google Scholar 

  24. D. Dai, Z. Hu, G. Pu, H. Li and C. Wang, Energy Convers. Manage., 47(13–14), 1686 (2006).

    Article  CAS  Google Scholar 

  25. C. Zhang, W. Han, X. Jing, G. Pu and C. Wang, Renewable and Sustainable Energy Rev., 7(4), 353 (2003).

    Article  CAS  Google Scholar 

  26. F. G. Ochoa and E. Gümez, Biochem. Eng. J., 1, 1 (1998).

    Article  Google Scholar 

  27. B. Özbek and S. Gayik, Process Biochem., 36, 729 (2001).

    Article  Google Scholar 

  28. J. C. T. Vogelaar, A. Klapwijk, J. B. Van Lier and W.H. Rulkens, Water. Res., 34(3), 1037 (2000).

    Article  CAS  Google Scholar 

  29. D.G. Díaz, N. Gomes, J. A. Teixeira and I. Belo, Chem. Eng. J., 152, 354 (2009).

    Article  CAS  Google Scholar 

  30. G. A. Hill, Ind. Eng. Chem. Res., 48, 3696 (2009).

    Article  CAS  Google Scholar 

  31. F. Scargiali, A. Busciglio, F. Grisafi and A. Brucato, Biochem. Eng. J., 49, 165 (2010).

    Article  CAS  Google Scholar 

  32. J.M. Chern, S. R. Chou and C. S. Shang, Water. Res., 35(13), 3041 (2001).

    Article  CAS  Google Scholar 

  33. D. d. A.V. Marques, B. R. Torres, A. L. F. Porto, A. P. Junior and A. Converti, Biochem. Eng. J., 47(1–3), 122 (2009).

    Article  CAS  Google Scholar 

  34. M. Jamnongwong, K. Loubiere, N. Dietrich and G. Hébrard, Chem. Eng. J., 165, 758 (2010).

    Article  CAS  Google Scholar 

  35. J.M. Chern and C. F. Yu, Ind. Eng. Chem. Res., 36, 5447 (1997).

    Article  CAS  Google Scholar 

  36. S. Hejiang, H. Le and Z. YunXia, Study on oxygen transfer model in an aerobic granule-based sequencing batch reactor, Proceedings of the 3 rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), 1 (2009).

  37. R. Adoua, M. M. Peuchot and V. Milisic, Chem. Eng. Sci., 65, 5455 (2010).

    Article  CAS  Google Scholar 

  38. M. Martin, F. J. Montes and M. A. Galán, Chem. Eng. J., 145, 232 (2008).

    Article  CAS  Google Scholar 

  39. A. Lancia, D. Musmarra, F. Pepe and M. Prisciandaro, Chem. Eng. J., 66, 123 (1997).

    Article  CAS  Google Scholar 

  40. P. C. Lines, Trans IchemE, 78(Part A), 342 (2000).

    Article  CAS  Google Scholar 

  41. R. Mineta, Z. Salehi, H. Yoshikawa and Y. Kawase, Biochem. Eng. J., 53, 266 (2011).

    Article  CAS  Google Scholar 

  42. V. Linek, M. Kordaè and T. Moucha, Chem. Eng. Process., 44, 121 (2005).

    Article  CAS  Google Scholar 

  43. M. S. Puthli, V. K. Rathod and A. B. Pandit, Biochem. Eng. J., 23, 25 (2005).

    Article  CAS  Google Scholar 

  44. R. H. Perry, D.W. Green and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, 7th Ed., McGraw-Hill, New York (1999).

    Google Scholar 

  45. A. R. A. Adebowale and L. O. Sanni, J. Food Sci. Technol., 50(3), 573 (2013).

    Article  CAS  Google Scholar 

  46. L.M. Che, D. Li, L. J. Wang, N. Özkan, X. D. Chen and Z. H. Mao, Carbohyd. Polym., 74, 385 (2008).

    Article  CAS  Google Scholar 

  47. L. Chen, Z.M. Chi, Z. Chi and M. Li, Appl. Biochem. Biotechnol., Korean J. Chem. Eng. 162, 252 (2010).

    Article  CAS  Google Scholar 

  48. J. Zhang, Z. Fang, H. Deng, X. Zhang and J. Bao, Bioresour. Technol., 134, 298 (2013).

    Article  CAS  Google Scholar 

  49. S. Shanavas, G. Padmaja, S. N. Moorthy, M. S. Sajeev and J.T. Sheriff, Biomass Bioenergy, 35, 901 (2011).

    Article  CAS  Google Scholar 

  50. A. E. Ghaly and R. Kok, Appl. Biochem. Biotechnol., 19, 259 (1988).

    Article  CAS  Google Scholar 

  51. J.R. Stukenberg, V.N. Wahbeh and R. E. McKinney, J. Water Control Fed., 49, 66 (1977).

    CAS  Google Scholar 

  52. B. Zhao, Y. Li, H. Tong, Y. Zhuo, L. Zhang, J. Shi and C. Chen, Chem. Eng. Sci., 60, 863 (2005).

    Article  CAS  Google Scholar 

  53. F. Garcia-Ochoa and E. Gomez, Biotechnol. Adv., 27, 153 (2009).

    Article  CAS  Google Scholar 

  54. J.M. Chern and S. P. Yang, Ind. Eng. Chem. Res., 42, 6653 (2003).

    Article  CAS  Google Scholar 

  55. C. J. Geankoplis, Transport process and separation process principles, 4th Ed., Prentice Hall (2003).

    Google Scholar 

  56. A. L. Downing and G. A. Truesdale, J. Appl. Chem., 5, 570 (1955).

    Article  CAS  Google Scholar 

  57. H. L. Elmore and W. F. West, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 87, 59 (1961).

    Google Scholar 

  58. I. Metzger and W. E. Dobbins, Environ. Sci. Technol., 1, 57 (1967).

    Article  CAS  Google Scholar 

  59. J. K. Bewtra, W. R. Nicholas and L. B. Polkowski, Water Res., 4, 115 (1970).

    Article  CAS  Google Scholar 

  60. M.B. Lakin and R. N. Salzman, J. Water Pollut. Control Fed., 51, 2419 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agus Saptoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saptoro, A., Herng, M.T.H. & Teng, E.L.W. Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: Experimental and mass transfer studies. Korean J. Chem. Eng. 31, 650–658 (2014). https://doi.org/10.1007/s11814-013-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0251-0

Keywords

Navigation