Skip to main content

Advertisement

Log in

Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 μm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 °C, permeate inlet temperature 25.0 °C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m2hr, indicating system feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Ettouney, H. T. El-Dessouky, R. S. Faibish and P. J. Gowin, Chem. Eng. Progr., 98, 32 (2002).

    CAS  Google Scholar 

  2. R. A. Kerr, Science, 281, 1128 (1998).

    Article  CAS  Google Scholar 

  3. M. Thomson, M. S. Miranda and D. Infield, Desalination, 153, 229 (2002).

    Article  Google Scholar 

  4. J.M. Ortiz, E. Expósito, F. Gallud, V. García-García, V. Montiel and A. Aldaz, J. Membr. Sci., 274, 138 (2006).

    Article  CAS  Google Scholar 

  5. F. Banat and N. Jwaied, Desalination, 230, 27 (2008).

    Article  CAS  Google Scholar 

  6. J. Koschikowski, M. Wieghaus, M. Rommel, V. S. Ortin, B. P. Suarez and J. R. B. Rodríguez, Desalination, 248, 125 (2009).

    Article  CAS  Google Scholar 

  7. H. E. S. Fath, Desalination, 116, 45 (1998).

    Article  CAS  Google Scholar 

  8. M. Mulder, Basic principles of membrane technology, 2nd Ed., Kluwer Academic Publishers, Netherlands (1996).

    Book  Google Scholar 

  9. A. O. Imdakm and T. Matsuura, J. Membr. Sci., 262, 117 (2005).

    Article  CAS  Google Scholar 

  10. L. F. Greenlee, D. F. Lawler, B.D. Freeman, B. Marrot and P. Moulin, Water Res., 43, 2317 (2009).

    Article  CAS  Google Scholar 

  11. V. Calabrò, B. L. Jiao and E. Drioli, Ind. Eng. Chem. Res., 33, 1803 (1994).

    Article  Google Scholar 

  12. T.Y. Cath, V. D. Adams and A. E. Childress, J. Membr. Sci., 228, 5 (2004).

    Article  CAS  Google Scholar 

  13. K.W. Lawson and D. R. Lloyd, J. Membr. Sci., 124, 1 (1997).

    Article  CAS  Google Scholar 

  14. B. Li and K. K. Sirkar, Ind. Eng. Chem. Res., 43, 5300 (2004).

    Article  CAS  Google Scholar 

  15. M. S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, J. Membr. Sci., 285, 4 (2006).

    Article  CAS  Google Scholar 

  16. F. A. Banat and J. Simandl, Sep. Sci. Technol., 33, 201 (1998).

    Article  CAS  Google Scholar 

  17. C. Charcosset, Desalination, 245, 214 (2009).

    Article  CAS  Google Scholar 

  18. A. Burgoyne and M.M. Vahdati, Sep. Sci. Technol., 35, 1257 (2000).

    Article  CAS  Google Scholar 

  19. A. M. Alklaibi and N. Lior, Desalination, 171, 111 (2004).

    Article  Google Scholar 

  20. B. Zhu, J. H. Kim, Y.-H. Na, I. S. Moon, G. Connor, S. Maeda, G. Morris, S. Gray and M. Duke, Membranes, 3, 155 (2013).

    Article  Google Scholar 

  21. J. Zhang, S. Gray and J.-D. Li, Desalination, 323, 142 (2013).

    Article  CAS  Google Scholar 

  22. C. K. Yoo, D. S. Kim, J.-H. Cho, S.W. Choi and I.-B. Lee, Korean J. Chem. Eng., 18, 408 (2001).

    Article  CAS  Google Scholar 

  23. S.-T. Hwang, Korean J. Chem. Eng., 28, 1 (2011).

    Article  CAS  Google Scholar 

  24. M. Manickam, T. O. Kwon, J.W. Kim, M. Duke, S. Gray and I. S. Moon, Desalination Water Treat., 13, 362 (2010).

    Article  Google Scholar 

  25. K. He, H. J. Hwang and I. S. Moon, Korean J. Chem. Eng., 28, 770 (2011).

    Article  CAS  Google Scholar 

  26. K. He, H. J. Hwang, M.W. Woo and I. S. Moon, J. Ind. Eng. Chem., 17, 41 (2011).

    Article  CAS  Google Scholar 

  27. H. J. Hwang, K. He, S. Gray, J. Zhang and I. S. Moon, J. Membr. Sci., 371, 90 (2011).

    Article  CAS  Google Scholar 

  28. E. Curcio and E. Drioli, Sep. Purif. Rev., 34, 35 (2005).

    Article  CAS  Google Scholar 

  29. S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai and E. Drioli, J. Membr. Sci., 323, 85 (2008).

    Article  CAS  Google Scholar 

  30. M. Gryta and M. Tomaszewska, J. Membr. Sci., 144, 211 (1998).

    Article  CAS  Google Scholar 

  31. S. A. Kalogirou, Prog. Energy Combust. Sci., 30, 231 (2004).

    Article  CAS  Google Scholar 

  32. M. Khayet, M. P. Godino and J. I. Mengual, Int. J. Nuclear Desalination, 1, 30 (2003).

    CAS  Google Scholar 

  33. L. Martínez-Díez, F. J. Florido-Díaz and M. I. Vázquez-González, Desalination, 126, 193 (1999).

    Article  Google Scholar 

  34. S. A. Avlonitis, K. Kouroumbas and N. Vlachakis, Desalination, 157, 151 (2003).

    Article  CAS  Google Scholar 

  35. L. M. Camacho, L. Dumée, J. Zhang, J.-d. Li, M. Duke, J. Gomez and S. Gray, Water, 5, 94 (2013).

    Article  Google Scholar 

  36. K.W. Lawson and D. R. Lloyd, J. Membr. Sci., 124, 1 (1997).

    Article  CAS  Google Scholar 

  37. F. Banat, R. Jumah and M. Garaibeh, Renew. Energy, 25, 293 (2002).

    Article  CAS  Google Scholar 

  38. P. A. Hogan, F. A.G. Sudjito and G. L. Morrison, Desalination, 81, 81 (1991).

    Article  CAS  Google Scholar 

  39. T.-C. Chen and C-D. Ho, J. Membr. Sci., 358, 122 (2010).

    Article  CAS  Google Scholar 

  40. J.B. Gálveza, L. García-Rodríguezb and I. Martín-Mateosc, Desalination, 246, 567 (2009).

    Article  Google Scholar 

  41. A. S. Jonsson, R. Wimmerstedt and A.C. Harrysson, Desalination, 56, 237 (1985).

    Article  Google Scholar 

  42. G. L. Liu, C. Zhu, C. S. Cheung and C.W. Leung, Heat Mass Transfer, 34, 329 (1998).

    Article  CAS  Google Scholar 

  43. A. Fahmi, A. Al-Rub, F. Banat and K. Bani-Melhem, Sep. Sci. Technol., 38, 3645 (2003).

    Article  Google Scholar 

  44. M.M. A. Shirazi, A. Kargari, M. Javad and A. Shirazi, Desalination Water Treat., 49, 368 (2012).

    Article  CAS  Google Scholar 

  45. M. Khayet, Adv. Colloid Interface Sci., 164, 56 (2011).

    Article  CAS  Google Scholar 

  46. A.M. Alklaibi and N. Lior, Desalination, 171, 111, (2004).

    Article  Google Scholar 

  47. E. Drioli, V. Calabrd and Y. Wu, Pure Appl. Chem., 58, 1657 (1986).

    Article  CAS  Google Scholar 

  48. R. B. Saffarini, E. K. Summers, H.A. Arafat, J. H. Lienhard, Desalination, 286, 332 (2012).

    Article  CAS  Google Scholar 

  49. J. D. Kang and K.Y. Heack, J. Korean Sol. Energy Soc., 27, 11 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Shik Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanisami, N., He, K. & Moon, I.S. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater. Korean J. Chem. Eng. 31, 155–161 (2014). https://doi.org/10.1007/s11814-013-0250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0250-1

Key words

Navigation