Skip to main content
Log in

Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Grace, A. A. Avidan and T.M. Knowlton, Circulating fluidized beds, Blackie Academic and Professional, London (1997).

    Google Scholar 

  2. P. Basu, Combustion and gasification in fluidized beds, CRC Press, New York (2006).

    Book  Google Scholar 

  3. D. Kunii and O. Levenspiel, Fluidization engineering, Butterworth-Heinemann, Boston (1991).

    Google Scholar 

  4. D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston (1994).

    Google Scholar 

  5. M. Rhodes, Introduction to particle technology, Wiley, West Sussex, UK (2008).

    Book  Google Scholar 

  6. W. C. Yang, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York (2003).

    Book  Google Scholar 

  7. H. Masuda, K. Higashitani and H. Yoshida, Powder technology: Handling and operations, process instrumentation, and working hazards, CRC Press, Boca Raton, FL (2006).

    Book  Google Scholar 

  8. B. Chalermsinsuwan, P. Kuchonthara and P. Piumsomboon, Chem. Eng. Process., 49, 1144 (2010).

    Article  CAS  Google Scholar 

  9. D. Gidaspow and V. Jiradilok, Computational techniques: The multiphase CFD approach to fluidization and green energy technologies, Nova Science Publishers, Inc., New York (2010).

    Google Scholar 

  10. H. T. Bi and J. R. Grace, Int. J. Multiphase Flow, 21(6), 1229 (1995).

    Article  CAS  Google Scholar 

  11. B. Chalermsinsuwan and P. Piumsomboon, Chem. Eng. Sci., 66, 5602 (2011).

    Article  CAS  Google Scholar 

  12. E. Rabinovich and H. Kalman, Powder Technol., 207(1–3), 119 (2011).

    Article  CAS  Google Scholar 

  13. X. Gao, C. Wu, Y.W. Cheng, L. J. Wang and X. Li, Powder Technol., 228, 1 (2012).

    Article  CAS  Google Scholar 

  14. Y. T. Makkawi and P. C. Wright, Chem. Eng. Sci., 57(13), 2411 (2002).

    Article  CAS  Google Scholar 

  15. Q. F. Hou, Z.Y. Zhou and A.B. Yu, Chem. Eng. Sci., 84, 449 (2012).

    Article  CAS  Google Scholar 

  16. O. Jaiboon, B. Chalermsinsuwan, L. Mekasut and P. Piumsomboon, Powder Technol., 233, 215 (2013).

    Article  CAS  Google Scholar 

  17. A. Almuttahar and F. Taghipour, Powder Technol., 185(1), 11 (2008).

    Article  CAS  Google Scholar 

  18. B. Chalermsinsuwan, P. Piumsomboon and D. Gidaspow, Chem. Eng. Sci., 64, 1195 (2009).

    Article  CAS  Google Scholar 

  19. G. Guan, C. Fushimi, A. Tsutsumi, M. Ishizuka, S. Matsuda, H. Hatano and Y. Suzuki, Particuology, 8(6), 602 (2010).

    Article  CAS  Google Scholar 

  20. M. Qi, S. Barghi and J. Zhu, Chem. Eng. J., 209, 633 (2012).

    Article  CAS  Google Scholar 

  21. B. Chalermsinsuwan, P. Piumsomboon and D. Gidaspow, AIChE J., 56, 2805 (2010).

    Article  CAS  Google Scholar 

  22. Y. Tatemoto, S. Yano, Y. Mawatari, K. Noda and N. Komatsu, Chem. Eng. Sci., 62(1–2), 471 (2007).

    Article  CAS  Google Scholar 

  23. F. R.G. B. da Silva, M. de Souza, A. M. de Souza da Costa, L. M. de Matos Jorge and P. R. Paraíso, Powder Technol., 229, 61 (2012).

    Article  Google Scholar 

  24. J. R. Grace, Powder Technol., 113, 242 (2000).

    Article  CAS  Google Scholar 

  25. S.W. Kim, G. Kirbas, H. Bi, C. J. Lim and J. R. Grace, Chem. Eng. Sci., 59, 3955 (2004).

    Article  CAS  Google Scholar 

  26. Z. Q. Li, C. N. Wu, F. Wei and Y. Jin, Powder Technol., 139, 214 (2004).

    Article  CAS  Google Scholar 

  27. J.C. S. C. Bastos, L. M. Rosa, M. Mori, F. Marini and W. P. Martignoni, Catal. Today, 130, 462 (2008).

    Article  CAS  Google Scholar 

  28. J. Zhu, Particuology, 8, 640 (2010).

    Article  CAS  Google Scholar 

  29. H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall, New Jersey (2007).

    Google Scholar 

  30. Fluent, Inc., Fluent 6.3 User’s Guide, Fluent, Inc., Lebanon (2006).

    Google Scholar 

  31. S. Chapman and T.G. Cowling, The mathematical theory of nonuniform gases, Cambridge University Press, New York (1970).

    Google Scholar 

  32. N. Zhang, B. Lu, W. Wang and J. Li, Chem. Eng. J., 162(2), 821 (2010).

    Article  CAS  Google Scholar 

  33. H. Bi and J. Zhu, AIChE J., 39(8), 1272 (1993).

    Article  CAS  Google Scholar 

  34. A. S. Issangya, D. Bai, H. T. Bi, K. S. Lim, J. Zhu and J. R. Grace, Chem. Eng. Sci., 54, 5451 (1999).

    Article  CAS  Google Scholar 

  35. E. Cruz, F. R. Steward and T. Pugsley, Powder Technol., 169(3), 115 (2006).

    Article  CAS  Google Scholar 

  36. A. Almuttahar and F. Taghipour, Chem. Eng. Sci., 63(6), 1696 (2008).

    Article  CAS  Google Scholar 

  37. X. Wang, F. Jiang, J. Lei, J. Wang, S. Wang, X. Xu and Y. Xiao, Appl. Therm. Eng., 31(14–15), 2254 (2011).

    Article  CAS  Google Scholar 

  38. H. Zhu and J. Zhu, Chem. Eng. Sci., 63(11), 2920 (2008).

    Article  CAS  Google Scholar 

  39. M. Qi, J. Zhu and S. Barghi, Chem. Eng. Sci., 84, 437 (2012).

    Article  CAS  Google Scholar 

  40. X. Zhu, C. Yang, C. Li, Y. Liu, L. Wang, T. Li and Q. Geng, Chem. Eng. J., 215–216, 188 (2013).

    Article  Google Scholar 

  41. T. Thummakul, P. Piumsomboon and B. Chalermsinsuwan, CFD simulation of carbon dioxide reduction from flue gas using solid sorbent in circulating fluidized bed reactor, Master’s Degree Thesis, Chulalongkorn University, Bangkok (2013).

    Google Scholar 

  42. B. Chalermsinsuwan, D. Gidaspow and P. Piumsomboon, Chem. Eng. J., 171, 301 (2011).

    Article  CAS  Google Scholar 

  43. B. Chalermsinsuwan, T. Chanchuey, W. Buakhao, D. Gidaspow and P. Piumsomboon, Chem. Eng. J., 189–190, 313 (2012).

    Google Scholar 

  44. A. Nikolopoulos, N. Nikolopoulos, A. Charitos, P. Grammelis, E. Kakaras, A.R. Bidwe and G. Varela, Chem. Eng. Sci., 90, 137 (2013).

    Article  CAS  Google Scholar 

  45. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  46. J. Wang, W. Ge and J. Li, Chem. Eng. Sci., 63(6), 1553 (2008).

    Article  CAS  Google Scholar 

  47. M. J. Rhodes, M. Sollaart and X. S. Wang, Powder Technol., 99(2), 194 (1998).

    Article  CAS  Google Scholar 

  48. E.R. Monazam, L. J. Shadle, J. S. Mei and J. Spenik, Powder Technol., 155(1), 17 (2005).

    Article  CAS  Google Scholar 

  49. D. Matonis, D. Gidaspow and M. Bahary, AIChE J., 48, 1413 (2002).

    Article  CAS  Google Scholar 

  50. V. Jiradilok, D. Gidaspow and R. W. Breault, Chem. Eng. Sci., 62, 3397 (2007).

    Article  CAS  Google Scholar 

  51. M. Tartan and D. Gidaspow, AIChE J., 50, 1760 (2004).

    Article  CAS  Google Scholar 

  52. M. Kashyap, B. Chalermsinsuwan and D. Gidaspow, Particuology, 9(6), 572 (2011).

    Article  Google Scholar 

  53. C. Campbell and D. Wang, J. Fluid Mech., 227, 495 (1991).

    Article  CAS  Google Scholar 

  54. G. Cody, D. Goldfarb, G. Storch and A, Norris, Powder Technol., 87, 211 (1996).

    Article  CAS  Google Scholar 

  55. D. Gidaspow and L. Huilin, AIChE J., 42, 2503 (1996).

    Article  CAS  Google Scholar 

  56. W. Polashenski and J. Chen, Powder Technol., 90, 13 (1997).

    Article  CAS  Google Scholar 

  57. W. Polashenski and J. Chen, Ind. Eng. Chem. Res., 38, 705 (1999).

    Article  CAS  Google Scholar 

  58. J. Jung, D. Gidaspow and I. K. Gamwo, Ind. Eng. Chem. Res., 44, 1329 (2005).

    Article  CAS  Google Scholar 

  59. V. Jiradilok, D. Gidaspow, S. Damronglerd, W. J. Koves and R. Mostofi, Chem. Eng. Sci., 61, 5544 (2006).

    Article  CAS  Google Scholar 

  60. O. Jaiboon, B. Chalermsinsuwan, L. Mekasut and P. Piumsomboon, Chem. Eng. J., 219, 262 (2013).

    Article  CAS  Google Scholar 

  61. K. Svoboda, S. Kalisz, F. Miccio, K. Wieczorek and M. Pohořelý, Powder Technol., 192(1), 65 (2009).

    Article  CAS  Google Scholar 

  62. A. Miller and D. Gidaspow, AIChE J., 38, 1801 (1992).

    Article  CAS  Google Scholar 

  63. D. Gidaspow and R. Mostofi, AIChE J., 49, 831 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjapon Chalermsinsuwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalermsinsuwan, B., Thummakul, T., Gidaspow, D. et al. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics. Korean J. Chem. Eng. 31, 350–363 (2014). https://doi.org/10.1007/s11814-013-0240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0240-3

Keywords

Navigation