Skip to main content
Log in

Evaluation of bubble suspension behavior in electrolyte melts

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The viscosity of a molten electrolyte mixture commonly used in direct coal fuel cells (DCFCs) was evaluated. The measurements were obtained from near the melting temperature to a high temperature at which a considerably bubbly flow was induced by decomposition. A gravity-driven capillary viscometer was employed to obtain the viscosity data under low Reynolds flow conditions, using a modified Poiseuille flow relationship. The importance of carbon dioxide addition in measuring the intrinsic viscosity was clearly observed. In addition, the effect of the bubble suspension on the viscosity was quantified in terms of the volume fraction and capillary number. The results showed that the increase in viscosity was best explained only by the difference in the volume fraction of spherical bubbles in the electrolyte melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, Z. Zhu, J. Chen, R. Marco, A. Dicks, J. Bradley and G. Lu, J. Power Sources, 186, 1 (2009).

    Article  CAS  Google Scholar 

  2. Wolverine Tube Inc., Void fractions in two phase flows, in Engineering Data Book III, Available Online (2007).

    Google Scholar 

  3. N. D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian and A. Lips, Colloids Surf.: A Physicochem. Eng. Aspects, 282, 327 (2006).

    Google Scholar 

  4. R. Hoehler and S. Cohen-Addad, J. Phys. Condens. Matter, l17, 1041 (2005).

    Article  Google Scholar 

  5. Q. Xu and W. R. Rossen, Colloids Surfaces: A Physicochem. Eng. Aspects, 216, 175 (2003).

    Article  CAS  Google Scholar 

  6. G.A. Hackett, J.W. Zondlo and R. Svensson, J. Power Sources, 168, 111 (2007).

    Article  CAS  Google Scholar 

  7. D. Cao, Y. Sun and G. Wang, J. Power Sources, 167, 250 (2007).

    Article  CAS  Google Scholar 

  8. Y. Murai and H. Oiwa, Fluid Dynamics Research, 40, 565 (2008).

    Article  Google Scholar 

  9. M. Kameda, T. Katsumata and M. Ichihara, Fluid Dynamics Research, 40, 576 (2008).

    Article  Google Scholar 

  10. M. Manga and M. Lowwenberg, J. Volcanol. Geothermal Res., 105, 19 (2001).

    Article  CAS  Google Scholar 

  11. A. C. Rust and M. Manga, J. Non-Newtonian Fluid Mech., 104, 53 (2002).

    Article  CAS  Google Scholar 

  12. A. C. Rust and M. Manga, J. Colloid Interface Sci., 249, 476 (2002).

    Article  CAS  Google Scholar 

  13. E. Q. Llewellin and M. Manga, J. Volcanol. Geothermal Res., 143, 205 (2005).

    Article  CAS  Google Scholar 

  14. I.H. J. Wilke, I. H. Kryk, I. J. Hartman and W. Wagner, Theory and praxis of capillary viscometer, Chapter 2, Available Online (2007).

    Google Scholar 

  15. G. A. Nunez, M. I. Briceno, D. D. Joseph and T. Asa, Colloidal coal in water suspensions, Available Online (2005).

    Google Scholar 

  16. F. M. White, Fluid mechanics, 2nd Ed., McGraw-Hill (2001).

    Google Scholar 

  17. F.A. Morrison, Shear viscosity measurement in a capillary rheometer, available online as lecture note (2007).

    Google Scholar 

  18. J. Sowinski and M. Dziubinski, Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen (2007).

    Google Scholar 

  19. G. F. Hewitt, in Handbook of Multiphase Systems, G. Hetsroni, Ed., McGraw-Hill, New York (1982).

  20. Electrolyte, http://www.doitpoms.ac.uk/tlplib/fuel-cells/mcfc_electrolyte.php, Available Online (2013).

  21. T. Ejima, Y. Sato, T. Yamamura, K. Tamal and M. Hasebe, J. Chem. Eng. Data, 32, 180 (1987).

    Article  CAS  Google Scholar 

  22. I.M. Kreiger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959).

    Article  Google Scholar 

  23. G. I. Taylor, Proc. R. Soc. London, Ser. A, 138, 41 (1932).

    Article  CAS  Google Scholar 

  24. N. A. Frankel and A. Acrivos, J. Fluid Mech., 44, 65 (1970).

    Article  Google Scholar 

  25. E. J. Hinchi and A. Acrivos, J. Fluid Mech., 98, 305 (1980).

    Article  Google Scholar 

  26. B. V. L’vov, Thermochim. Acta, 386, 1 (2002).

    Article  Google Scholar 

  27. F. P. Incropera and D. P. DeWitt, Fundamentals of heat and mass transfer, Chapter 10, 6th Ed., Wiley (2006).

    Google Scholar 

  28. B. V. L’vov, J. Thermal Anal. Calorimetry, 96, 487 (2009).

    Article  Google Scholar 

  29. S.R. Turns, Introduction to combustion: Concepts and applications, Chapter 3, 2nd Ed., McGraw-Hill (2000).

    Google Scholar 

  30. K. H. Stern and E. L. Weise, National Bureau of Standards, 30 (1969).

    Google Scholar 

  31. B. V. L’vov, Thermochim. Acta, 373, 97 (2001).

    Article  Google Scholar 

  32. S. C. Lee, M. S. Kim, M. K. Hwang, K. B. Kim, C. H. Jeon and J. H. Song, Experiments in Fluid and Thermal Science, 49, 94 (2013).

    Article  CAS  Google Scholar 

  33. W.M. Rohsenow, Trans. ASME, 74, 969 (1952).

    CAS  Google Scholar 

  34. R. I. Vachon, J. Heat Transfer, 90, 239 (1968).

    Article  CAS  Google Scholar 

  35. C. D. Han and R. G. King, J. Rheol., 24, 213 (1980).

    Article  CAS  Google Scholar 

  36. S. J. Choi and W. R. Schowalter, Phys. Fluids, 18, 420 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Kim, K., Hwang, M. et al. Evaluation of bubble suspension behavior in electrolyte melts. Korean J. Chem. Eng. 31, 201–210 (2014). https://doi.org/10.1007/s11814-013-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0206-5

Key words

Navigation