Skip to main content
Log in

Solvated behavior and crystal growth mechanism of erythromycin in aqueous acetone solution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The solubility of erythromycin acetone solvate and dihydrate was experimentally determined in aqueous acetone mixtures at different temperature. It has been demonstrated that solubility curves of the two solvates intersected at given solvent composition at various temperature, suggesting a transition behavior between two solvates. The induction period of acetone solvate at different supersaturation was measured by the laser monitoring observation technique. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. From the surface entropy factor values calculated, together with surface morphology observation by the atomic force microscopy (AFM), the growth mechanism of erythromycin acetone solvate is consistent with continuous growth mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nangia, Cryst. Growth Des., 6, 2 (2006).

    Article  CAS  Google Scholar 

  2. D. Chopra and T.N. Guru Row, Cryst. Growth Des., 7, 848 (2007).

    Article  Google Scholar 

  3. M. Kitamura, Cryst. Growth Des., 4, 1153 (2004).

    Article  CAS  Google Scholar 

  4. G. Cindy, K. C. Hezekiah and V. S. Ann, Rapid Commun. Mass Sp, 14, 878 (2000).

    Article  Google Scholar 

  5. F. Yoshinobu, F. Yomoaki and Y. Yuko, Chem. Pharm. Bull., 31, 4029 (1983).

    Article  Google Scholar 

  6. G. Madrasa and B. J. McCoy, Chem. Eng. Sci., 59, 2573 (2004).

    Google Scholar 

  7. M. Kitamura and S. Hironaka, Cryst. Growth Des., 6, 1214 (2006).

    Article  CAS  Google Scholar 

  8. A. S. Gregory, G. S. Joseph and H. P. Stowell, J. Pharm. Sci., 86, 1239 (1997).

    Article  Google Scholar 

  9. I. Miroshnyk, L. Khriachtchev and S. Mirza, Cryst. Growth Des., 6, 369 (2006).

    Article  CAS  Google Scholar 

  10. M. N. Butler and W. J. Weber, Environ. Sci. Technol., 39, 2301 (2005).

    Article  CAS  Google Scholar 

  11. A. E. Graham, A.V. Thomas and R. Yang, J. Org. Chem., 65, 2583 (2000).

    Article  CAS  Google Scholar 

  12. Z. Z. Wang, J. K. Wang and L. P. Dang, Ind. Eng. Chem. Res., 46, 1851 (2007).

    Article  CAS  Google Scholar 

  13. A. Bernardo, C. E. Calmanovici and E. A. Miranda, Cryst. Growth Des., 4, 799 (2004).

    Article  CAS  Google Scholar 

  14. H. X. Hao and J. K. Wang, J. Cryst. Growth, 274, 545 (2005).

    Article  CAS  Google Scholar 

  15. Y. L. Geng, D. Xu and X. Q. Wang, J. Cryst. Growth, 280, 266 (2005).

    Article  CAS  Google Scholar 

  16. A. Lancia, D. Musmarra and M. Prisciandaro, AIChE J., 45, 390 (1999).

    Article  CAS  Google Scholar 

  17. M. Kitamura and K. Nakamura, J. Cryst. Growth, 236, 676 (2002).

    Article  CAS  Google Scholar 

  18. K. Selvaraju, R. Valluvan and S. Kumararaman, Mater. Lett., 60, 1549 (2006).

    Article  CAS  Google Scholar 

  19. R. J. Davey, Curr. Topics Mater. Sci., 8, 454 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Fang, W. & Li, Y. Solvated behavior and crystal growth mechanism of erythromycin in aqueous acetone solution. Korean J. Chem. Eng. 31, 120–124 (2014). https://doi.org/10.1007/s11814-013-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0199-0

Key words

Navigation