Skip to main content
Log in

Effects of linear low density polyethylene on physical properties and irradiation effectiveness of polypropylene

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Blends of polypropylene (PP)/linear low density polyethylene (LLDPE) were prepared by melt mixing in twin screw extruder at 190 °C. Polyfunctional monomer TMPTMA (trimethylolpropane-trimetacrylate) was added to the mixture as a crosslinking co-agent to improve the crosslinking or branching efficiency of the olefins during irradiation. The effect of LLDPE on the crosslinking or branching effectiveness and physical properties of PP was investigated in conjunction with the monomer content of LLDPE in the blends. Thermal stability, rheological properties and electron beam irradiation effectiveness of PP in presence of LLDPE were analyzed by DSC, TGA and RDS. Solution gel analysis and the presence of −C=O in FT-IR test supported some crosslinking or branching that occurred after irradiation. Certain decrease in melting temperature (T m ) that was noticed after irradiation could have been the result of chain scissioning, which decreases the number of tie molecules in the amorphous region and consequently weakens the lamellar connections. Shear thinning effect and zero shear viscosity were improved by irradiation in the PE incorporated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Yoon, S. Park and Y. C. Kim, Polym. J., 44, 1098 (2012).

    Article  CAS  Google Scholar 

  2. H.M. Abdel-Hamid, Solid State Electron., 49, 1163 (2005).

    Article  CAS  Google Scholar 

  3. R. D. Deanin and C. H. Chung, In handbook of polyolefins-synthesis and properties, Vasile, C. Seymour, R. B., Eds., Marcel Dekker, New York, 779 (1993).

  4. J. Li., R. A. Shanks and Y. Long, J. Appl. Polym. Sci., 76, 1151 (2000).

    Article  CAS  Google Scholar 

  5. E. Borsig, M. van Duin, A. D. Gotis and F. Picchioni, Euro. Polym. J., 44, 200 (2008).

    Article  CAS  Google Scholar 

  6. C. J. Tsenoglou and A. D. Gotsis, Macromolecules, 34, 4685 (2001).

    Article  CAS  Google Scholar 

  7. J. Tian, W. Yu and C. X. Zhou, Polymer, 47, 7962 (2006).

    Article  CAS  Google Scholar 

  8. M. Yamaguchi and M. H. Wagner, Polymer, 47, 3629 (2006).

    Article  CAS  Google Scholar 

  9. S.A. Mousavi, S. Dabdin, M. Frounchi, D. C. Venerus and T. Medina, Radiat. Phys. Chem., 79, 1088 (2010).

    Article  Google Scholar 

  10. E. Kolodka, W.-J. Wang, S. Zhu and A. Hamielec, Macromolecules, 35, 10062 (2002).

    Article  CAS  Google Scholar 

  11. C. He, S. Costeux, P. Wood-Adams and M. J. Dealy, Polymer, 44, 7181 (2003).

    Article  CAS  Google Scholar 

  12. R. P. Labendijk, A. H. Hogt, A. Buijtenhuijs and A.D. Gotsos, Polymer, 42, 10035 (2001).

    Article  Google Scholar 

  13. S. J. Choi, K. H. Yoon, H. S. Kim, S.Y. Yoo and Y. C. Kim, Polymer (Korea), 35, 356 (2011).

    CAS  Google Scholar 

  14. J. Li, C. Zhou and W. Gans, Polymer Testing, 22, 217 (2003).

    Article  Google Scholar 

  15. J. S. Parent, S. S. Sengupta, M. Kaufman and B. I. Chaudhary, Polymer, 49, 3884 (2008).

    Article  CAS  Google Scholar 

  16. L. Wang and B. Huang, J. Polym. Sci. Part B: Polym. Phys., 28, 937 (1990).

    Article  CAS  Google Scholar 

  17. M. A. Suleiman and A. I. Hussein, Macromol. Symp., 262, 130 (2008).

    Article  Google Scholar 

  18. R. A. Shanks, J. Li and L. Yu, Polymer, 41, 2133 (2000).

    Article  CAS  Google Scholar 

  19. W. Zahi, C.B. Park and M. Kontopoulous, Ind. Eng. Chem. Res., 50, 7282 (2001).

    Article  Google Scholar 

  20. D.H. Han, S. H. Shin and S. Petrov, Radiat. Phys. Chem., 69, 239 (2004).

    Article  CAS  Google Scholar 

  21. J. Sharif, S. H. S. A Aziz and K. Hashim, Radiat. Phys. Chem., 58, 371 (2000).

    Article  Google Scholar 

  22. L. Spenadel, Radiat. Phys. Chem., 14, 683 (1979).

    CAS  Google Scholar 

  23. S. Ahmed, A. A. Basfar and M. M. A. Aziz, Polym. Degrad. Stab., 67, 319 (2000).

    Article  CAS  Google Scholar 

  24. R. L. Clough, Beam Interactions with Materials and Atoms, 185, 8 (2001).

    CAS  Google Scholar 

  25. M. Denac, V. Musil, I. Šmit and F. Ranogajec, Polym. Degrad. Stab., 82, 263 (2003).

    Article  CAS  Google Scholar 

  26. S. Shukushima, H. Hayami, T. Ito and S. Nishimoto, Radiat. Phys. Chem., 60, 489 (2001).

    Article  CAS  Google Scholar 

  27. X. C. Zhang, M. F. Butler and R. E. Cameron, Polymer, 41, 3797 (2000).

    Article  CAS  Google Scholar 

  28. K. Beate, V. Dieter, L. Haussle, D. Auhl and H. Munstedt, J. Appl. Polym. Sci., 100, 2770 (2006).

    Article  Google Scholar 

  29. B. M. Lacoste and J. Gardette, Polym. Degrad. Stab., 65, 421 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Cheol Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahal, P., Kim, J.H. & Kim, Y.C. Effects of linear low density polyethylene on physical properties and irradiation effectiveness of polypropylene. Korean J. Chem. Eng. 31, 1–5 (2014). https://doi.org/10.1007/s11814-013-0189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0189-2

Key words

Navigation