Skip to main content
Log in

Microcellular foaming of silicone rubber with supercritical carbon dioxide

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In spite of great concern on the industrial application of microcellular silicone rubber foams, such as in electric and medical devices, only a few works can be found about the foaming of silicone rubber. In this study, microcellular silicone rubber foams with a cell size of 12 μm were successfully prepared with curing by heat and foaming by supercritical CO2 as a green blowing agent. The microcellular silicone rubber foams exhibited a well-defined cell structure and a uniform cell size distribution. The crosslinking and foaming of silicone rubber was carried out separately. After foaming, the silicone rubber foam was cross-linked again to stabilize the foam structure and further improve its mechanical properties. Foaming process of cross-linked silicone rubber should be designed carefully based on the viscoelastic properties because of its elastic volume recovery in the atmosphere. The basic crosslinking condition for small cell size and high cell density was obtained after investigating the rheological behavior during crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Leitner, Nature, 405, 129 (2000).

    Article  CAS  Google Scholar 

  2. S. C. Tucker, Chem. Rev., 99, 391 (1999).

    Article  CAS  Google Scholar 

  3. O. Kajimoto, Chem. Rev., 99, 355 (1999).

    Article  CAS  Google Scholar 

  4. M.A. McHugh and V. J. Krukonis, Supercritical fluid extraction, Butterworth-Heinemann (1994).

    Google Scholar 

  5. S. Alsoy and J. L. Duda, Chem. Eng. Technol., 22, 971 (1999).

    Article  CAS  Google Scholar 

  6. J.L. Kendall, D. A. Canelas, J.L. Young and J.M. de Simone, Chem. Rev., 99, 543 (1999).

    Article  CAS  Google Scholar 

  7. D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee and K.W. Koelling, Ind. Eng. Chem. Res., 42, 6431 (2003).

    Article  CAS  Google Scholar 

  8. R. Hernandez, J. Weksler, A. Padsalgikar and J. Runt, Macromolecules, 40, 5441 (2007).

    Article  CAS  Google Scholar 

  9. I.V. Yannas and J. F. Burke, J. Biomed. Mater. Res., 14, 65 (1980).

    Article  CAS  Google Scholar 

  10. F. Abbasi, H. Mirzadeh and M. Simjoo, J. Biomater. Aci. Polym. Ed., 17, 341 (2006).

    Article  CAS  Google Scholar 

  11. Z. Gao, J. S. Nahrup, J. E. Mark and A. Sakr, J. Appl. Polym. Sci., 96, 494 (2005).

    Article  CAS  Google Scholar 

  12. R.W. Hergenrother, Y. Xue-Hai and S. L. Cooper, Biomaterials, 15, 635 (1994).

    Article  CAS  Google Scholar 

  13. Y. B. Kim, D. Cho and W. H. Park, J. Appl. Polym. Sci., 116, 449 (2010).

    Article  CAS  Google Scholar 

  14. R. Hernandez, J. Weksler, A. Padsalgikar and J. Runt, J. Biomed. Mater. Res., 87A, 546 (2008).

    Article  CAS  Google Scholar 

  15. R. J. Young and P. A. Lowell, Introduction to polymers, 2nd Ed., Chapman and Hall, UK (1991).

    Book  Google Scholar 

  16. L. Lopez, A. Cogrove, J. P. Hernandez-Ortiz and T. A. Osswald, Polym. Eng. Sci., 47, 675 (2007).

    Article  CAS  Google Scholar 

  17. B. Kamarudin, M. Hiroshi, E. Taro, Y. Fumio and M. Keizo, Polym. Deg. Stab., 62, 551 (1998).

    Article  Google Scholar 

  18. Z. Ghazali, A. F. Johnson and K. Z. Dahlan, Rad. Phys. Chem., 55, 73 (1999).

    Article  CAS  Google Scholar 

  19. J. Heiner, B. Stenberg and M. Persson, Polym. Testing, 22, 253 (2003).

    Article  CAS  Google Scholar 

  20. R. L. Warley, D. L. Feke and I. Manas-Zloczower, J. Appl. Polym. Sci., 97, 1504 (2005).

    Article  CAS  Google Scholar 

  21. G. Baquey, L. Moine, O. Babot, M. Degueil and B. Maillard, Polymer, 46, 6283 (2005).

    Article  CAS  Google Scholar 

  22. H. Kawashima and M. Shimbo, Cellular Polymers, 22, 175 (2003).

    CAS  Google Scholar 

  23. J. E. Martini, N. P. Suh and F. A. Waldman, US Patent, 4,473,665 (1984).

  24. J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, 500 (1987).

    Article  CAS  Google Scholar 

  25. C.Y. M. Tung and P. J. Dynes, J. Appl. Polym. Sci., 27, 569 (1982).

    Article  CAS  Google Scholar 

  26. A.Y. Malkin, S.G. Kulichikhin, M. L. Kerber, I.Y. Gorbunova and E. A. Murashova, Polym. Eng. Sci., 37, 1322 (1997).

    Article  CAS  Google Scholar 

  27. I.-K. Hong and S. Lee, J. Ind. Eng. Chem., 19, 42 (2013).

    Article  CAS  Google Scholar 

  28. M. Shimbo, T. Nomura, K. Muratani and K. Fukumura, The 3rd international conference on axiomatic design, Seoul, ICAD-2004-25 (2004).

    Google Scholar 

  29. V. Kumar and N. P. Suh, Polym. Eng. Sci., 30, 1323 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Kwon Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, IK., Lee, S. Microcellular foaming of silicone rubber with supercritical carbon dioxide. Korean J. Chem. Eng. 31, 166–171 (2014). https://doi.org/10.1007/s11814-013-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0188-3

Key words

Navigation