Skip to main content
Log in

On the reason why acid treatment of biomass enhances the biosorption capacity of cationic pollutants

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present work is aimed at understanding the effect of acid treatment and demonstrating the reason for its effect. For this, Corynebacterium glutamicum biomass was used as a model biomass. Two cationic (cadmium and Methylene Blue) and one anionic (Reactive Red 4) pollutants were used to evaluate the sorption capacity by the biomass. Isotherm experiments showed that acid treatment of the biomass increased the uptake of the cationic pollutants, but decreased that of the anionic pollutant. Through the results of FTIR and potentiometric titrations, it was found that carboxyl groups on the biomass increased after acid treatment. The carboxyl groups seem to be generated likely through hydrolysis of esters in the biomass under the acidic condition. Therefore, increase of the carboxyl groups provided the binding sites for cationic pollutants, whereas it may interfere with the binding of anionic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla and K. L. Dorris, J. Hazard. Mater., 80, 33 (2000).

    Article  CAS  Google Scholar 

  2. P. Nigam, G. Armour, I.M. Banat, D. Singh and R. Marchant, Bioresour. Technol., 72, 219 (2000).

    Article  CAS  Google Scholar 

  3. M. Solís, A. Solís, H. I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47, 1723 (2012).

    Article  Google Scholar 

  4. T. A. Davis, B. Volesky and A. Mucci, Water Res., 37, 4311 (2003).

    Article  CAS  Google Scholar 

  5. Z. Aksu, Process Biochem., 40, 997 (2005).

    Article  CAS  Google Scholar 

  6. S.W. Won, S. B. Choi, M. H. Han and Y.-S. Yun, Korean Chem. Eng. Res., 43, 542 (2005).

    CAS  Google Scholar 

  7. J. Mao, S. W Won, K. Vijayaraghavan and Y.-S. Yun, Chem. Eng. J., 162, 662 (2010).

    Article  CAS  Google Scholar 

  8. L. J. Umali, J. R. Duncan and J. E. Burgess, Biotechnol. Lett., 28, 45 (2006).

    Article  CAS  Google Scholar 

  9. K. Vijayaraghavna and Y.-S. Yun, Biotechnol. Adv., 26, 266 (2008).

    Article  Google Scholar 

  10. S. K. Mehta and J. P. Gaur, Crit. Rev. Biotechnol., 25, 113 (2005).

    Article  CAS  Google Scholar 

  11. E. Romera, F. González, A. Ballester, M. L. Blázquez and J. A. Muñoz, Crit. Rev. Biotechnol., 26, 223 (2006).

    Article  CAS  Google Scholar 

  12. D. Kumar and J. P. Gaur, Bioresour. Technol., 102, 2529 (2011).

    Article  CAS  Google Scholar 

  13. Y.-S. Yun, D. Park, J.M. Park and B. Volesky, Environ. Sci. Technol., 35, 4353 (2001).

    Article  CAS  Google Scholar 

  14. F. Pagnanelli, F. Vegliò and L. Toro, Chemosphere, 54, 905 (2004).

    Article  CAS  Google Scholar 

  15. P. Lodeiro, B. Cordero, Z. Grille, R. Herrero and M. E. Sastre de Vicente, Biotechnol. Bioeng., 88, 237 (2004).

    Article  CAS  Google Scholar 

  16. J. Mao, S.W. Won and Y.-S. Yun, Ind. Eng. Chem. Res., 52, 6446 (2013).

    Article  CAS  Google Scholar 

  17. K. Vijayaraghavan, J. Mao and Y.-S. Yun, Bioresour. Technol., 99, 2864 (2008).

    Article  CAS  Google Scholar 

  18. M. H. Han and Y.-S. Yun, Biochem. Eng. J., 36, 2 (2007).

    Article  CAS  Google Scholar 

  19. S.W. Won, S.B. Choi and Y.-S. Yun, Colloid Surf. A-Physicochem. Eng. Asp., 262, 175 (2005).

    Article  CAS  Google Scholar 

  20. J. Mao, S.W. Won and Y.-S. Yun, World J. Microbiol. Biotechnol., 25, 1259 (2009).

    Article  CAS  Google Scholar 

  21. L. H. Velazquez-Jimenez, A. Pavlick and J. R. Rangel-Mendez, Ind. Crop. Prod., 43, 200 (2013).

    Article  CAS  Google Scholar 

  22. S. Deng and Y. P. Ting, Environ. Sci. Technol., 39, 8490 (2005).

    Article  CAS  Google Scholar 

  23. S. T. Akar, A. Gorgulu, Z. Kaynak, B. Anilan and T. Akar, Chem. Eng. J., 148, 26 (2009).

    Article  CAS  Google Scholar 

  24. N. Yee, L.G. Benning, V.R. Phoenix and F.G. Ferris, Environ. Sci. Technol., 38, 775 (2004).

    Article  CAS  Google Scholar 

  25. S.W. Won, S. B. Choi and Y.-S. Yun, Biochem. Eng. J., 28, 208 (2006).

    Article  CAS  Google Scholar 

  26. F. Pagnanelli, M. Petrangeli Papini, L. Toro, M. Trifoni and F. Vegliò, Environ. Sci. Technol., 34, 2773 (2000).

    Article  CAS  Google Scholar 

  27. V. Padmavathy, P. Vasudevan and S. C. Dhingra, Chemosphere, 52, 1807 (2003).

    Article  CAS  Google Scholar 

  28. R. Ashkenazy, L. Gottlieb and S. Yannai, Biotechnol. Bioeng., 55, 1 (1997).

    Article  CAS  Google Scholar 

  29. S. Schiewer and B. Volesky, in Environmental microbe-metal interactions, D. R. Lovley Ed., ASM Press, Washington, DC (2000).

  30. S. Hunt, in Immobilization of ions by biosorption, H. Eccles, S. Hunt Eds., Ellis Horwood, Chichester, UK (1986).

  31. R. Pratibha, P. Malar, T. Rajapriya, S. Balapoornima and V. Ponnusami, Desalination, 264, 102 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeoung-Sang Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, S.W., Choi, S.B. & Yun, YS. On the reason why acid treatment of biomass enhances the biosorption capacity of cationic pollutants. Korean J. Chem. Eng. 31, 68–73 (2014). https://doi.org/10.1007/s11814-013-0184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0184-7

Key words

Navigation