Skip to main content
Log in

Fabrication and characterization of silicon nanostructures based on metal-assisted chemical etching

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We present a facile method to fabricate one-dimensional Si nanostructures based on Ag-induced selective etching of silicon wafers. To obtain evenly distributed Si nanowires (SiNWs), the fabrication parameters have been optimized. As a result, a maximum of average growth rate of 0.15 μm/min could be reached. Then, the fabricated samples were characterized by water contact angle (CA) experiments. As expected, the as-etched silicon samples exhibited a contact angle in the range of 132°–136.5°, whereas a higher contact angle (145°) could be obtained by chemical modification of the SiNWs with octadecyltrichlorosilane (OTS). Additionally, Raman spectra experiments have been carried out on as-prepared nanostructures, showing a typical decreasing from 520.9 cm−1 to 512.4 cm−1 and an asymmetric broadening, which might be associated with the phonon quantum confinement effect of Si nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. R. Rao, F.L. Deepak, G. Gundiah and A. Govindraj, Prog, Solid State Chem., 31(1–2), 5 (2003).

    Article  CAS  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003).

    Article  CAS  Google Scholar 

  3. J. Goldberger, A. I. Hochbaum, R. Fan and P. Yang, Nano Lett., 6(5), 973 (2006).

    Article  CAS  Google Scholar 

  4. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, Nature, 449, 885 (2007).

    Article  CAS  Google Scholar 

  5. K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee, Nano Lett., 9(11), 3704 (2009).

    Article  CAS  Google Scholar 

  6. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang and X. Duan, Nano Lett., 9(12), 4539 (2009).

    Article  CAS  Google Scholar 

  7. V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk and S. H. Christiansen, Nano Lett., 9(4), 1549 (2009).

    Article  CAS  Google Scholar 

  8. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui, Nano Lett., 11(7), 2949 (2011).

    Article  CAS  Google Scholar 

  9. M. Ge, J. Rong, X. Fang and C. Zhou, Nano Lett., 12(5), 2318 (2012).

    Article  CAS  Google Scholar 

  10. K. Chen, B. R. Li and Y. Chen, Nantod., 6(2), 131 (2011).

    Article  CAS  Google Scholar 

  11. M.M. A. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach, D. E. Davies, P. H. Howarth, M. R. R. Planque, H. Morgan and P. Ashburn, Nano Lett., 12(4), 1868 (2012).

    Article  CAS  Google Scholar 

  12. E. Ria, X. M. Liu, C. A. Ross, A. O. Adeyeye and W. K. Choi, J. Appl. Phys., 112(2), 024312 (2012).

    Article  Google Scholar 

  13. J. Bauer, F. Fleischer, O. Breitenstein, L. Schubert, P. Werner, U. Gsele and M. Zacharias, Appl. Phys. Lett., 90, 012105 (2007).

    Article  Google Scholar 

  14. Y. H. Yang, S. J. Wu, S. H. Chiu, P. Lin and Y. T. Chen, J. Phys. Chem. B, 108, 846 (2004).

    Article  CAS  Google Scholar 

  15. K. K. Lew and J. M. Redwing, J. Cryst. Growth, 254(1–2), 14 (2003).

    Article  CAS  Google Scholar 

  16. H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng and J. Lin, Nanotechnology, 16, 417 (2005).

    Article  Google Scholar 

  17. R. Q. Zhang, Y. Lifshitz and S. T. Lee, Adv. Mater., 15(7–8), 635 (2003).

    Article  CAS  Google Scholar 

  18. A. T. Heitsch, D. D. Fanfair, H.Y. Tuan and B.A. Korgel, J. Am. Chem. Soc., 130(16), 5436 (2008).

    Article  CAS  Google Scholar 

  19. K. J. Morton, G. Nieberg, S. F. Bai and S.Y. Chou, Nanotechnology, 19, 345301 (2008).

    Article  Google Scholar 

  20. H. D. Tong, S. Chen, W.G. van der Wiel, E. T. Carlen and A. van den Berg, Nano Lett., 9(3), 1015 (2009).

    Article  CAS  Google Scholar 

  21. S. T. Connor, M. X. Tang and Y. Cui, Appl. Phys. Lett., 93(13), 133109 (2008).

    Article  Google Scholar 

  22. K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Adv. Mater., 14(16), 1164 (2002).

    Article  CAS  Google Scholar 

  23. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, J. Phys. Chem. C, 112(12), 4444 (2008).

    Article  CAS  Google Scholar 

  24. H. Chen, H. Wang, X. H. Zhang, C. S. Lee and S.T. Lee, Nano Lett., 10(3), 864 (2010).

    Article  CAS  Google Scholar 

  25. A.G. Nassiopoulou, V. Gianneta and C. Katsogridakis, Nanoscale Res. Lett., 6, 597 (2011).

    Article  Google Scholar 

  26. K. Q. Peng, Y. Wu, H. Fang, X.Y. Zhong, Y. Xu and J. Zhu, Angew. Chem. Int. Ed., 44(18), 2737 (2005).

    Article  CAS  Google Scholar 

  27. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee and J. Zhu, Adv. Funct. Mater., 16(3), 387 (2006).

    Article  CAS  Google Scholar 

  28. Z. P. Huang, H. Fang and J. Zhu, Adv. Mater., 19(5), 744 (2007).

    Article  CAS  Google Scholar 

  29. K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee, Appl. Phys. Lett., 95(14), 143119 (2009).

    Article  Google Scholar 

  30. C. F. Pan, Z. X. Luo, C. Xu, J. Luo, R. R. Liang, G. Zhu, W. Z. Wu, W. X. Guo, X. X. Yan, J. Xu, Z. L. Wang and J. Zhu, ACS Nano., 5(8), 6629 (2011).

    Article  CAS  Google Scholar 

  31. K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Adv. Funct. Mater., 13(2), 127 (2003).

    Article  CAS  Google Scholar 

  32. K. Q. Peng and J. Zhu, J. Electroanal. Chem., 558, 35 (2003).

    Article  CAS  Google Scholar 

  33. K. Q. Peng, Y. Wu, H. Fang, X.Y. Zhong, Y. Xu and J. Zhu, Angew. Chem., 117(18), 2797 (2005).

    Article  Google Scholar 

  34. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944).

    Article  CAS  Google Scholar 

  35. X. J. Huang, J. H. Lee, J.W. Lee, J. B. Yoon and Y. K. Choi, Small, 4(2), 211 (2008).

    Article  CAS  Google Scholar 

  36. F. Shi, Y. Y. Song, J. Niu, X. H. Xia, Z. Q. Wang and X. Zhang, Chem. Mater., 18(5), 1365 (2006).

    Article  CAS  Google Scholar 

  37. B. B. Li, D. P. Yu and S. L. Zhang, Phys. Rev. B, 59(3), 1645 (1999).

    Article  CAS  Google Scholar 

  38. C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma and X. Zhao, Physica E, 30(1–2), 169 (2005).

    Article  CAS  Google Scholar 

  39. K. W. Adu, H. R. Gutierrez, U. J. Kim and P. C. Eklund, Phys. Rev. B, 73(15), 15533 (2006).

    Article  Google Scholar 

  40. R. Gupta, Q. Xiong, C. K. Adu, U. J. Kim and P. C. Eklund, Nano Lett., 3(5), 627 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Fan, X., Sang, S. et al. Fabrication and characterization of silicon nanostructures based on metal-assisted chemical etching. Korean J. Chem. Eng. 31, 62–67 (2014). https://doi.org/10.1007/s11814-013-0180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0180-y

Key words

Navigation