Skip to main content
Log in

Photooxidative removal of Hg0 from simulated flue gas using UV/H2O2 advanced oxidation process: Influence of operational parameters

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Element mercury (Hg0) from flue gas is difficult to remove because of its low solubility in water and high volatility. A new technology for photooxidative removal of Hg0 with an ultraviolet (UV)/H2O2 advanced oxidation process is studied in an efficient laboratory-scale bubble column reactor. Influence of several key operational parameters on Hg0 removal efficiency is investigated. The results show that an increase in the UV light power, H2O2 initial concentration or H2O2 solution volume will enhance Hg0 removal. The Hg0 removal is inhibited by an increase of the Hg0 initial concentration. The solution initial pH and pH conditioning agent have a remarkable synergistic effect. The highest Hg0 removal efficiencies are achieved at the UV light power of 36W, H2O2 initial concentration of 0.125 mol/L, Hg0 initial concentration of 25.3 μg/Nm3, solution initial pH of 5, H2O2 solution volume of 600 ml, respectively. In addition, the O2 percentage has little effect on the Hg0 removal efficiency. This study is beneficial for the potential practical application of Hg0 removal from coal-fired flue gas with UV/H2O2 advanced oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vaithiyanathan, C. J. Richardson, R.G. Kavanaugh, C. B. Craft and T. Barkay, Environ. Sci. Technol., 30(8), 2591 (1996).

    Article  CAS  Google Scholar 

  2. J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal and S. A. Benson, Fuel Process. Technol., 82(2–3), 89 (2003).

    Article  CAS  Google Scholar 

  3. X. P. Fan, C. T. Li, G. M. Zeng, X. Zhang, S. S. Tao, P. Lu, Y. Tan and D. Q. Luo, Energy Fuel, 26(4), 2082 (2012).

    Article  CAS  Google Scholar 

  4. J. Munthe, H. Hultberg and A. Iverfeldt, Water Air Soil Pollut., 80(1–4), 227 (1995).

    Google Scholar 

  5. W. Liu, R. D. Vidic and T. D. Brown, Environ. Sci. Technol., 32(4), 531 (1998).

    Article  CAS  Google Scholar 

  6. Y. Wu, S.X. Wang and D.G. Streets, Environ. Sci. Technol., 40(17), 5312 (2006).

    Article  CAS  Google Scholar 

  7. X.Y. Wen, C. T. Li, X. P. Fan, H. L. Gao, W. Zhang, L. Chen, G. M. Zeng and Y. P. Zhao, Energy Fuel, 25(7), 2939 (2011).

    Article  CAS  Google Scholar 

  8. R. Yan, D. T. Liang, T. Tsen, Y. P. Wong and Y. L. Lee, Fuel, 83(17–18), 2401 (2004).

    Article  CAS  Google Scholar 

  9. F. Ding, Y. C. Zhao, L. L. Mi, H. L. Li, Y. Li and J.Y. Zhang, Ind. Eng. Chem. Res., 51(7), 3039 (2012).

    Article  CAS  Google Scholar 

  10. Z. Qu, N. Q. Yan, P. Liu, J. P. Jia and S. J. Yang, J. Hazard. Mater., 183(1–3), 132 (2010).

    Article  CAS  Google Scholar 

  11. E.M. Prestbo and N. S. Bloom, Water Air Soil Poll., 80(1–4), 145 (1995).

    Article  CAS  Google Scholar 

  12. L. Zhang, Y. Q. Zhuo, L. Chen, X. C. Xu and C.H. Chen, Fuel Process. Technol., 89(11), 1033 (2008).

    Article  CAS  Google Scholar 

  13. E. J. Granite, H.W. Pennline and R.A. Hargis, Ind. Eng. Chem. Res., 39(4), 1020 (2000).

    Article  CAS  Google Scholar 

  14. A. Aleboyeh, M. B. Kasiri, M. E. Olya and H. Aleboyeh, Dyes Pigm., 77(2), 288 (2008).

    Article  CAS  Google Scholar 

  15. F. H. Alhamedi, M. A. Rauf and S. S. Ashraf, Desalination, 239(1–3), 159 (2009).

    Article  CAS  Google Scholar 

  16. Y. Lester, D. Avisar and H. Mamane, Environ. Technol., 31(2), 175 (2010).

    Article  CAS  Google Scholar 

  17. A. Fujishima and K. Honda, Nature, 238(5358), 37 (1972).

    Article  CAS  Google Scholar 

  18. B. Chen, C. Yang and N. K. Goh, J. Environ. Sci. — China, 17(6), 886 (2005).

    CAS  Google Scholar 

  19. N. Shigwedha, Z. Z. Hua and J. Chen, J. Environ. Sci. — China, 19(3), 367 (2007).

    Article  CAS  Google Scholar 

  20. Q. H. Hu, C. L. Zhang, Z. R. Wang, C. Yan, K. H. Mao, X. Q. Zhang, Y. L. Xiong and M. J. Zhu, J. Hazard. Mater., 154(1–3), 795 (2008).

    Article  CAS  Google Scholar 

  21. N. Modirshahla and M. A. Behnajady, Dyes Pigm., 70(1), 54 (2006).

    Article  CAS  Google Scholar 

  22. F. Yuan, C. Hu, X. X. Hu, D. B. Wei, Y. Chen and J. H. Qu, J. Hazard. Mater., 185(2–3), 1256 (2011).

    Article  CAS  Google Scholar 

  23. D. Alibegic, S. Tsuneda and A. Hirata, Chem. Eng. Sci., 56(21–22), 6195 (2001).

    Article  CAS  Google Scholar 

  24. C. D. Cooper, C. A. Clausen, L. Pettey, M. M. Collins and M. P. de Fernandez, J. Environ. Eng. — Asce, 128(1), 68 (2002).

    Article  CAS  Google Scholar 

  25. S.C. Ma, J.X. Ma, Y. Zhao and M. Su, Proc. Chin. Soc. Electr. Eng., 29(5), 27 (2009).

    CAS  Google Scholar 

  26. Y. X. Liu, J. Zhang, C. D. Sheng, Y.C. Zhang and L. Zhao, Energy Fuel, 24(9), 4925 (2010).

    Article  CAS  Google Scholar 

  27. Y. X. Liu, J. Zhang, C. D. Sheng, Y. C. Zhang and L. Zhao, Sci. China Technol. Sci., 53(7), 1839 (2010).

    Article  CAS  Google Scholar 

  28. M. Muruganandham and M. Swaminathan, Dyes Pigm., 62(3), 269 (2004).

    Article  CAS  Google Scholar 

  29. N. Daneshvar, M. A. Behnajady and Y. Z. Asghar, J. Hazard. Mater., 139(2), 275 (2007).

    Article  CAS  Google Scholar 

  30. Y. X. Liu, J. Zhang, C. D. Sheng, Y.C. Zhang and L. Zhao, Energy Fuel, 24(9), 4931 (2010).

    Article  CAS  Google Scholar 

  31. G.V. Buxton, C. L. Greenstock, W. P. Helman and A.B. Ross, J. Phys. Chem. Ref. Data, 17(2), 513 (1988).

    Article  CAS  Google Scholar 

  32. N. Daneshvar, M. A. Behnajady, M.K.A. Mohammadi and M. S. S. Dorraji, Desalination, 230(1–3), 16 (2008).

    Article  CAS  Google Scholar 

  33. H. Y. Shu and M. C. Chang, Dyes Pigm., 65(1), 25 (2005).

    Article  CAS  Google Scholar 

  34. E. J. Land and M. Ebert, Trans. Faraday Soc., 63, 1181 (1967).

    Article  CAS  Google Scholar 

  35. M. P. Titus, V.G. Molina, M. A. Banos, J. Gimenez and S. Esplugas, Appl. Catal. B: Environ., 47(4), 219 (2004).

    Article  Google Scholar 

  36. M. Bobu, A. Yediler and I. Siminiceanu, Appl. Catal. B: Environ., 83(1–2), 15 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoping Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Zhong, Z., Ding, K. et al. Photooxidative removal of Hg0 from simulated flue gas using UV/H2O2 advanced oxidation process: Influence of operational parameters. Korean J. Chem. Eng. 31, 56–61 (2014). https://doi.org/10.1007/s11814-013-0179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0179-4

Key words

Navigation