Skip to main content
Log in

Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Laminar mixed convection of Al2O3/water nanofluid flow in a cavity in which the upper wall is moving from right to left has been studied numerically. Fifteen different arrangements of two discrete sources and four discrete sinks have been considered. This work shows when one source is located at the right side of the bottom wall and other one at the down half of the left wall, total heat transfer achieves its maximum value. The lowest heat transfer rate is achieved when more than two vortexes are created in the cavity (case 13 for Ri=1 and case 5 for Ri=100). In general, for cases with one overall vortex, the cavities which have separate sources induce better cooling and have higher Nu number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Maxwell, A treatise on electricity and magnetism, Clarendon Press (1891).

    Google Scholar 

  2. S. U. S. Choi, Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow, ASME FED 231/MD 66, 99 (1995).

    Google Scholar 

  3. M. Izadi, A. Behzadmehr and D. Jalali-Vahid, Int. J. Therm. Sci., 48, 2119 (2009).

    Article  CAS  Google Scholar 

  4. M. Izadi, M.M. Shahmardan, M. J. Maghrebi and A. Behzadmehr, Chem. Eng. Commun. 723077, 200(7) (2013).

    Google Scholar 

  5. E. B. Ogut, Int. J. Therm. Sci., 48, 2063 (2009).

    Article  Google Scholar 

  6. J. L. Lage and A. Bejan, Int. J. Heat Mass Transf., 36(8), 2027 (1993).

    Article  CAS  Google Scholar 

  7. H. S. Kwak and J.M. Hyun, J. Fluid Mech., 329, 65 (1996).

    Article  Google Scholar 

  8. H. S. Kwak, K. Kuwahara and J. M. Hyun, Int. J. Heat Mass Transf., 41(18), 2837 (1998).

    Article  Google Scholar 

  9. M. Kazmierczak and Z. Chinoda, Int. J. Heat Mass Transf., 35(6), 1507 (1992).

    Article  CAS  Google Scholar 

  10. M. Kazmierczak and A. Muley, Int. J. Heat Fluid Flow, 15(1), 30 (1994).

    Article  CAS  Google Scholar 

  11. B. Ghasemi and S. M. Aminossadati, Int. J. Therm. Sci., 49, 1 (2010).

    Article  CAS  Google Scholar 

  12. Z. Alloui, P. Vasseur and M. Reggio, Int. J. Therm. Sci., 50(3), 385 (2011).

    Article  CAS  Google Scholar 

  13. H. A. Pakravan and M. Yaghoubi, Int. J. Therm. Sci., 50(3), 394 (2011).

    Article  CAS  Google Scholar 

  14. R. K. Tiwari and M. K. Das, Int. J. Heat Mass Transfer, 50(9–10), 2002 (2007).

    Article  CAS  Google Scholar 

  15. K. Kahveci, J. Heat Transfer, 132(6), 062501–129 (2010).

    Article  Google Scholar 

  16. M. Muthtamilselvana, P. Kandaswamya and J. Lee, Communications in Nonlinear Science and Numerical Simulation, 15(6), 1501 (2010).

    Article  Google Scholar 

  17. M. Jahanshahi, S. F. Hosseinizadeh, M. Alipanah, A. Dehghani and G. R. Vakilinejad, Int. Commun. Heat Mass Transfer, 37(6), 687 (2010).

    Article  CAS  Google Scholar 

  18. Y. Xuan and Q. Li, Int. J. Heat Fluid Flow, 21, 58 (2000).

    Article  CAS  Google Scholar 

  19. Y. Yang, Z.G. Zhang, E. A. Grulke, W. B. Anderson and G. Wu, Int. J. Heat Mass Transf., 48, 1106 (2005).

    Google Scholar 

  20. C. H. Chon, K. D. Kihm, S. P. Lee and S. U. S. Choi, Appl. Phys. Lett., 87, 1 (2005).

    Article  Google Scholar 

  21. N. Masoumi, N. Sohrabi and A. Behzadmehr, J. Phys. D: Appl. Phys., 42, 055501 (2009).

    Article  Google Scholar 

  22. K. Khanafar, K. Vafai and M. Lightstone, Int. J. Heat Mass Transf., 46, 3639 (2003).

    Article  Google Scholar 

  23. T. Basak, S. Roy, P.K. Sharma and I. Pop, Int. J. Therm. Sci., 48, 891 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Izadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izadi, M., Behzadmehr, A. & Shahmardan, M.M. Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J. Chem. Eng. 31, 12–19 (2014). https://doi.org/10.1007/s11814-013-0176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0176-7

Key words

Navigation