Skip to main content
Log in

Silver recovery from radiographic film processing effluents by hydrogen peroxide: Modeling and optimization using response surface methodology

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The recovery of silver from X-ray film processing effluents by precipitation using hydrogen peroxide as the precipitating agent was studied. Response surface methodology (RSM) and central composite design (CCD) were applied to achieve optimum conditions. Linear, square and interactions effects between parameters to study of a second order polynomial equation were obtained. Optimum condition included the volume of H2O2 0.8 ml/min, pH=5.5, ethylene glycol 9 ml in the experimental condition. In these conditions silver recovery percentage was predicted as 92.8%. The experiment was conducted in triplicate under optimized conditions. Silver recovery percentage and average of precipitate were obtained as 91.5% and 423.19mg, respectively, which were close to the predicted amount achieved by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Kononova, A. G. Kholmogorov, N. V. Danilenko, N. G. Goryaeva, K. A. Shatnykh and S.V. Kachin, Hydrometallurgy, 88, 189 (2007).

    Article  CAS  Google Scholar 

  2. S. Syed, S. Suresha, L.M. Sharma and A. A. Syed, Hydrometallurgy, 63, 277 (2002).

    Article  CAS  Google Scholar 

  3. S. A. Bolorunduro, Miner. Eng., 16, 695 (2003).

    Article  CAS  Google Scholar 

  4. J. Nan, D. Han, M. Yang, M. Cui and X. Hou, Hydrometallurgy, 84, 75 (2006).

    Article  CAS  Google Scholar 

  5. Y. Pranolo, W. Zhang and C.Y. Cheng, Hydrometallurgy, 102, 37 (2010).

    Article  CAS  Google Scholar 

  6. Y. J. Park and D. J. Fray, J. Hazard. Mater., 164, 1152 (2009).

    Article  CAS  Google Scholar 

  7. N. Nakibo lu, D. Toscal and G. Nisli, Turk. J. Chem., 27, 127 (2003).

    Google Scholar 

  8. I. Rivera, A. Roca, M. Cruells, F. Patino and E. Salinas, Hydrometallurgy, 89, 89 (2007).

    Article  CAS  Google Scholar 

  9. N. Sathaiyan, V. Nandakumar and P. Ramachandran, J. Power Sources, 161, 1463 (2006).

    Article  CAS  Google Scholar 

  10. J. P. Chen and L. L. Lim, Chemosphere, 60, 1384 (2005).

    Article  CAS  Google Scholar 

  11. A. Troupis, A. Hiskia and E. Papaconstantinou, Appl. Catal., B 42, 305 (2003).

    Article  Google Scholar 

  12. V. Stankovic, L. Outarra, F. Zonnevijlle and C. Comninellis, Sep. Purif. Technol., 61, 366 (2008).

    Article  CAS  Google Scholar 

  13. K.G. Adani, R.W. Barley and R. D. Pascoe, Miner. Eng., 18, 1269 (2005).

    Article  CAS  Google Scholar 

  14. S. Aktas, Can. Metall. Q., 47, 37 (2008).

    Article  CAS  Google Scholar 

  15. J. F. Blais, Z. Djedidi, R. B. Cheikh, R. D. Tyagi and G. Mercier, Journal of Hazardous Toxic and Radioactive Waste, 12, 135 (2008).

    CAS  Google Scholar 

  16. P. E. Tsakiridis, P. Oustadakis and S. Agatzini-Leonardou, J. Environ. Chem. Eng., http://dx.doi.org/10.1016/j.jece.2013.03.004 (2013).

    Google Scholar 

  17. E.Y. Yazici, H. Deveci and R. Yazici, Sep. Sci. Technol., 46, 2231 (2011).

    Article  CAS  Google Scholar 

  18. F. Fourcade, T. Tzedakis and A. Bergel, Chem. Eng. Sci., 58, 3507 (2003).

    Article  CAS  Google Scholar 

  19. S. Shankar, S.V. More and R. Seeta Laxman, Kathmandu University Journal of Science, Engineering and Technology, 6, 60 (2010).

    Google Scholar 

  20. V. Ortiz, M. Angélica Rubio and E. A. Lissi, Atmospheric Environment, 34, 1139 (2000).

    Article  CAS  Google Scholar 

  21. A. Karimi, F. Mahdizadeh and M.R. Eskandarian, Chem. Ind. Chem. Eng. Q., 18, 89 (2012).

    Article  CAS  Google Scholar 

  22. M.R. Eskandarian, A. Karimi and M. R. Shabgard, J. Taiwan Ins. Chem. Eng., 44, 331 (2013).

    Article  CAS  Google Scholar 

  23. C.W. Jones, Applications of hydrogen peroxide and derivatives, RSC Clean Technology Monographs, The Royal Society of Chemistry, Cambridge, U.K., 282 (1999).

    Google Scholar 

  24. A. D. Bas, E.Y. Yazici and H. Deveci, Hydrometallurgy, 121–124, 1 (2012).

    Google Scholar 

  25. S. S. Bhattacharya and R. Banerjee, Chemosphere, 73, 81 (2008).

    Article  CAS  Google Scholar 

  26. L. Mohajeri, H. Abdul Aziz, M. Ali Zahed, S. Mohajeri, S. Rahman, K. Mohamed and M. Hasnain Isa, Water Sci. Technol., 63, 618 (2011).

    Article  CAS  Google Scholar 

  27. M. Ahmadi, F. Vahabzadeh, B. bonakdarpour, E. Mofarrah and M. Mehranian, J. Hazard. Mater., 123, 187 (2005).

    Article  CAS  Google Scholar 

  28. A. Karimi, F. Mahdizadeh, D. Salari, F. Vahabzadeh and A.R. Khataee, Chem. Ind. Chem. Eng. Q., 18, 431 (2012).

    Article  CAS  Google Scholar 

  29. M.R. Eskandarian, F. Mahdizadeh, L. Ghalamchi and S. Naghavi, Desalin. Water Treat., 22, 1 (2013).

    Article  Google Scholar 

  30. W. Djoudi, F. Aissani-Benissad and S. Bourouina-Bacha, Chem. Eng. J., 133, 1 (2007).

    Article  CAS  Google Scholar 

  31. Z. Salehi, F. Vahabzadeh, M. Sohrabi, Sh. Fatemi and H. Tawfig Zand, Biodegradation, 21, 645 (2010).

    Article  CAS  Google Scholar 

  32. M. Zarei, A. Niaei, D. Salari and A. Khataee, J. Hazard. Mater., 173, 544 (2010).

    Article  CAS  Google Scholar 

  33. M. Anderson and P. Whitcomb, DOE simplified: practical tools for effective experimentation, 2nd Ed., Productivity Press, New York (2007).

    Google Scholar 

  34. A. Kumar, B. Prasad and I. M. Mishra, Can. J. Chem. Eng., 87, 637 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Eskandarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdizadeh, F., Eskandarian, M., Zabarjadi, J. et al. Silver recovery from radiographic film processing effluents by hydrogen peroxide: Modeling and optimization using response surface methodology. Korean J. Chem. Eng. 31, 74–80 (2014). https://doi.org/10.1007/s11814-013-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0174-9

Key words

Navigation