Skip to main content
Log in

Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Activated carbons have been prepared from jute stick by both chemical and physical activation methods using zinc chloride and steam, respectively. They were characterized by evaluating surface area, iodine number, pore size distribution, and concentration of surface functional groups. The chemically activated carbon largely featured micropore structure, while the physically activated carbon mainly featured macropore structure. The specific surface area of chemically and physically activated carbons was 2,325 and 723 m2/g, while the iodine number was 2,105 and 815mg/g, respectively. The concentration of surface functional groups was determined by Boehm titration method, which suggested that different types of surface functional groups are randomly distributed on chemical activated carbons, while it is limited for physical activated carbon. The microporosity along with surface functional groups provided a unique property to chemically activated carbon to adsorb Methylene Blue dye to a large extent. The adsorption of dye was also affected by the adsorption parameters such as adsorption time, temperature and pH. Comparatively, higher temperature and pH significantly facilitated dye adsorption on chemically activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Crini, Bioresour. Technol., 97, 1061 (2006).

    Article  CAS  Google Scholar 

  2. G. Crini, F. Gimbert, C. Robert, B. Martel, O. Adam, N. Morin-Crini, F. D. Giorgi and P.-M. Badot, J. Hazard. Mater., 153, 96 (2008).

    Article  CAS  Google Scholar 

  3. G. Crini, H. N. Peindy, F. Gimbert and C. Robert, Sep. Purif. Technol., 53, 97 (2007).

    Article  CAS  Google Scholar 

  4. G. Crini and H. N. Peindy, Dyes Pigm., 70, 204 (2006).

    Article  CAS  Google Scholar 

  5. M. F. Elahmadi, N. Bensalah and A. Gadri, J. Hazard. Mater., 168, 1163 (2009).

    Article  CAS  Google Scholar 

  6. A. N. Soon and B. H. Hameed, Desalination, 269, 1 (2011).

    Article  CAS  Google Scholar 

  7. O. Türgay, G. Ersöz, S. Atalay, J. Forss and U. Welander, Sep. Purif. Technol., 79, 26 (2011).

    Article  Google Scholar 

  8. E. Guibal and J. Roussy, React. Funct. Poly., 67, 33 (2007).

    Article  CAS  Google Scholar 

  9. Y. He, G. Li, H. Wang, J. Zhao, H. Su and Q. Huang, J. Memb. Sci., 321, 183 (2008).

    Article  CAS  Google Scholar 

  10. H. Lata, R. K. Gupta and V. K. Gar, Chem. Eng. Commun., 195, 1185 (2008).

    Article  CAS  Google Scholar 

  11. H. Lata, S. Mor, V. K. Garg and R. K. Gupta, J. Hazard. Mater., 153, 213 (2008).

    Article  CAS  Google Scholar 

  12. D.W. Wang, F. Li, G. Q. Lu and H. M. Cheng, Carbon, 46, 1593 (2008).

    Article  CAS  Google Scholar 

  13. J.M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla and M. Sanchez-Polo, J. Env. Manage., 85, 833 (2007).

    Article  CAS  Google Scholar 

  14. M. Seredych, E. Deliyanni and T. J. Bandosz, Fuel, 89, 1499 (2010).

    Article  CAS  Google Scholar 

  15. A. Silvestre-Albero, J. Silvestre-Albero, A. Sepúlveda-Escribano and F. Rodríguez-Reinoso, Micropor. Mesopor. Mater., 120, 62 (2009).

    Article  CAS  Google Scholar 

  16. K.S.W. Sing, D. H. Everett, R.A.W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure. Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  17. W. Zhao, V. Fierro, C. Zlotea, E. Aylon, M. T. Izquierdo, M. Latroche and A. Celzard, Int. J. Hydrog. Energy, 36, 5431 (2011).

    Article  CAS  Google Scholar 

  18. Z. L. K. Mui, W. H. Cheung, M. Valix and G. McKay, J. Colloid Interface Sci., 347, 290 (2010).

    Article  CAS  Google Scholar 

  19. G. Skodras, I. Diamantopoulou, A. Zabaniotou, G. Stavropoulos and G. P. Sakellaropoulos, Fuel Process. Technol., 88, 749 (2007).

    Article  CAS  Google Scholar 

  20. M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, J. Anal. Appl. Pyrol., 94, 131 (2012).

    Article  Google Scholar 

  21. D. Kalderis, D. Koutoulakis, P. Paraskeva, E. Diamadopoulos, E. Otal, J. O. del Valle and C. Fernandez-Pereira, Chem. Eng. J., 144, 42 (2008).

    Article  CAS  Google Scholar 

  22. M. Asadullah, M. Asaduzzaman, M. S. Kabir, M.G. Mostofa and T. Miyazawa, J. Hazard. Mater., 174, 437 (2010).

    Article  CAS  Google Scholar 

  23. H. P. Boehm, Carbon, 40, 145 (2002).

    Article  CAS  Google Scholar 

  24. D. M. Keown, J.-I. Hayashi and C.-Z. Li, Fuel, 87, 1127 (2008).

    Article  CAS  Google Scholar 

  25. M. Asadullah, T. Miyazawa, S.-I. Ito, K. Kunimori, M. Yamada and K. Tomishige, Appl. Catal. A: Gen., 267, 95 (2004).

    Article  CAS  Google Scholar 

  26. M. Asadullah, M. A. Rahman, M. A. Motin and M. B. Sultan, Ads. Sci. Technol., 24, 761 (2006).

    Article  CAS  Google Scholar 

  27. M. Asadullah, M. A. Rahman, M. A. Motin and M.B. Sultan, J. Surf. Sci. Technol., 23, 1 (2004).

    Google Scholar 

  28. M. Asadullah, I. Jahan, M. B. Ahmed, P. Adawiyah, N. H. Malek and M. S. Rahman, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.06.019 (2013).

    Google Scholar 

  29. L. Lin, S.-R. Zhai, Z.-Y. Xiao, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 136, 437 (2013).

    Article  CAS  Google Scholar 

  30. Y. Chen, S.-R. Zhai, N. Liu, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 144, 401 (2013).

    Article  CAS  Google Scholar 

  31. A. Gundogdu, C. Duranb, H. B. Senturk, M. Soylak, M. Imamoglu and Y. Onal, J. Anal. Appl. Pyrol., http://dx.doi.org/10.1016/j.jaap.2013.07.008 (2013).

    Google Scholar 

  32. M. Loredo-Cancino, E. Soto-Regalado, F. J. Cerino-Córdova, R. B. García-Reyes, A. M. García-León and M. T. Garza-González, J. Environ. Manage., 125, 117 (2013).

    Article  CAS  Google Scholar 

  33. A.A. Ceyhan, Ö. ahin, O. Baytar and C. Saka, J. Anal. Appl. Pyrol., http://dx.doi.org/10.1016/j.jaap.2013.06.009 (available online, 2013).

    Google Scholar 

  34. H. Liu, J. Zhang, C. Zhang, N. Bao and C. Cheng, Carbon, 60, 289 (2013).

    Article  CAS  Google Scholar 

  35. A.L. Ahmad, M. M. Loh and J.A. Aziz, Dyes Pigm., 75, 263 (2007).

    Article  CAS  Google Scholar 

  36. Ö. Gerçel, A. Özcan, A. S. Özcan and H. F. Gerçel, Appl. Surf. Sci., 253, 4843 (2007).

    Article  Google Scholar 

  37. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 184, 57 (2012).

    Article  CAS  Google Scholar 

  38. S. K. Theydana and M. J. Ahmeda, J. Anal. Appl. Pyrol., 97, 116 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asadullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadullah, M., Kabir, M.S., Ahmed, M.B. et al. Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water. Korean J. Chem. Eng. 30, 2228–2234 (2013). https://doi.org/10.1007/s11814-013-0172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0172-y

Key words

Navigation