Skip to main content
Log in

Polyhydroxybutyrate production accompanied by the effective reduction of chemical oxygen demand (COD) and biological oxygen demand (BOD) from industrial effluent

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Industrial effluents are major pollution-causing agents for our environment. Our study focuses on utilizing effluents from different industries for efficient production of Polyhydroxybutyrate (PHB). Presence of PHB was identified by Sudan Black staining method. The PHB production parameters for Pseudomonas aeruginosa MTCC 4673 were studied critically, and it was found that glucose with 8.5 mg/L (0.0550 g PHB/g substrate) PHB concentration yielded the highest among the carbon sources used. Peptone with 8.9 mg/L (0.0524 g PHB/g substrate) of PHB concentration, an incubation period of 48 h and at a pH of 7 yielded the optimum results. These studies were compared with those of Alcaligens latus MTCC 2311. Dairy effluents (DE) and tannery effluents (TE) were considered for the best possible substrate, for the production of PHB in an optimized media. The results indicated that the dairy effluents gave a higher yield of PHB. Amongst various dilution levels studied from 10–100% (v/v), 50% (v/v) concentration of the dairy effluent showed maximum PHB productivity of 0.0582 g PHB/g substrate. A comparison of the chemical oxygen demand (COD) and biological oxygen demand (BOD) from the results, showed a significant removal percentage of 78.97% BOD and 53.482% COD, which highlighted the importance of utilizing effluents for PHB production, in order to reduce the risk of toxic effluent discharge. FT-IR analysis was carried out to confirm the presence of PHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kirithika, K. Rajarathinam and S. Venkatesan, Dev. Microbiol. Mol. Biol., 2, 1 (2009).

    Google Scholar 

  2. R. Leaversuch, Mod. Plastic, 8, 52 (1987).

    Google Scholar 

  3. P. A. Holmes, Phys. Technol., 16, 32 (1985).

    Article  CAS  Google Scholar 

  4. S. Y. Lee, Biotechnol. Bioeng., 49, 1 (1996).

    Article  CAS  Google Scholar 

  5. S.Y. Lee, K. M. Lee, H. N. Chang and A. Steinbuchel, Biotechnol. Bioeng., 44, 1337 (1994).

    Article  CAS  Google Scholar 

  6. A. Arun, A. Murrugappan, D. David Ravindran, V. Veeramanikandan and Shanmuga Balaji, Afr. J. Biotechnol., 5, 1524 (2006).

    CAS  Google Scholar 

  7. P. H. Yu, H. Chua, A. L. Huang and K. P. Ho, Appl. Biochem. Biotechnol., 78, 445 (1999).

    Article  Google Scholar 

  8. R. Z. Sayeed and N. S. Ganguurde, Ind. J. Exp. Biol., 5, 68 (2010).

    Google Scholar 

  9. E. Grothe, M.M. Young and Y. Chisti, Enz. Microbiol., Technol., 25, 132 (1999).

    Article  CAS  Google Scholar 

  10. E. A. Dawes and P. J. Senio, Adv. Microb. Pbys., 10, 266 (1973).

    Google Scholar 

  11. B. S. Kim, S. C. Lee, S.Y. Lee, H. N. Chang, Y. K. Chang and S. I. Woo, Biotechnol. Bioeng., 43, 892 (1994).

    Article  CAS  Google Scholar 

  12. S.W. Kim, P. Kim, H. S. Lee and J. H. Kim, Biotechnol. Lett., 18, 25 (1996).

    Article  CAS  Google Scholar 

  13. H. Preusting, R. van Houten, A. Hoefs, E. K. van Langenberghe, O. Favre-Bulle and B. Witholt, Biotechnol. Bioeng., 41, 550 (1993).

    Article  CAS  Google Scholar 

  14. O. Hrabak, FEMS Microbiol. Rev., 103, 251 (1992).

    CAS  Google Scholar 

  15. K. Sujatha, A. Mahalakshmi and Shenbagarathai, Ind. J. Biotechnol., 4, 216 (2005).

    CAS  Google Scholar 

  16. K.W. Nickerson, W. J. Zarnick and V. C. Kramer, FEMS Microbiol. Lett., 12, 327 (1981).

    CAS  Google Scholar 

  17. Y. Wakisaka, E. Masaki and Y. Nishimoto, Appl. Environ. Microbiol., 43, 1473 (1982).

    CAS  Google Scholar 

  18. A. J. Anderson, G.W. Haywood and E. A. Dawes, Int. J. Biol. Macromol., 12, 102 (1990).

    Article  CAS  Google Scholar 

  19. A. Azhar, A.M. El-sayed, Abdel Hafez, Hemmat M. Abdelhady and T. A. Khodair, Aust. J. Basic Appl. Sci., 3, 617 (2009).

    Google Scholar 

  20. J. Choi and S.Y. Lee, Appl. Microbiol. Biotechnol., 51, 13 (1999).

    Article  CAS  Google Scholar 

  21. S. R. Pandian, V. Deepak, K. Kalishwaralal, N. Rameshkumar, M. Jeyaraj and S. Gurunathan, Bioresour. Technol., 101, 705 (2009).

    Article  Google Scholar 

  22. E. A. Dawes and P. J. Senior, Adv. Microbiol. Phys., 10, 135 (1973).

    CAS  Google Scholar 

  23. Z.T. Dobroth, H. Shengjun, E. R. Coats and A.G. McDonald, Bioresour. Technol., 102, 3352 (2011).

    Article  CAS  Google Scholar 

  24. S. Sangyoka, N. Poomipuk and A. Reungsang, Sains Malaysiana, 41, 1211 (2012).

    CAS  Google Scholar 

  25. T. Rawate and S. Mavinkurve, Curr. Sci., 83, 562 (2002).

    Google Scholar 

  26. B. Senthilkumar and G. Prabakaran, Ind. J. Biotechnol., 76–79 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Radha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidharan, R., Sindhuja, P.B., Sudalai, A. et al. Polyhydroxybutyrate production accompanied by the effective reduction of chemical oxygen demand (COD) and biological oxygen demand (BOD) from industrial effluent. Korean J. Chem. Eng. 30, 2191–2196 (2013). https://doi.org/10.1007/s11814-013-0169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0169-6

Key words

Navigation