Skip to main content
Log in

Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200–400 °C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lambert, R. Hammerle, R. McGill, M. Khair and C. Sharp, Technical advantages of urea SCR for light-duty and heavy-duty diesel vehicle applications, SAE 2004-01-1292 (2004).

    Book  Google Scholar 

  2. L. Olsson, H. Sjövall and R. J. Blint, Appl. Catal. B: Environ., 81, 203 (2008).

    Article  CAS  Google Scholar 

  3. J. C. Wurzenberger and R. Wanker, Multi-scale SCR modeling, 1D kinetic analysis and 3D system simulation, SAE 2005-01-0948 (2005).

    Book  Google Scholar 

  4. X. Zhang and M. Romzek, Computational fluid dynamics (CFD) applications in vehicle exhaust system, SAE 2008-01-0612 (2008).

    Book  Google Scholar 

  5. S.-J. Jeong, S.-J. Lee, W.-S. Kim and C. B. Lee, Simulation on the optimum shape and location of urea injector for urea-SCR system of heavy-duty diesel engine to prevent NH 3 slip, SAE 2005-01-3886.

  6. M. Koebel, M. Elsener and M. Kleemann, Catal. Today, 59, 335 (2000).

    Article  CAS  Google Scholar 

  7. S. D. Yim, S. J. Kim, J. H. Baik, I.-S. Nam, Y. S. Mok, J.-H. Lee, B. K. Cho and S. H. Oh, Decomposition of Urea into NH 3 for the SCR Process, American Chemical Society, 43, 4856 (2004).

    CAS  Google Scholar 

  8. T. L. McKinley, A.G. Alleyne and C.-F. Lee, Mixture non-uniformity in SCR systems: Modeling and uniformity index requirements for steady-state and transient operation, SAE 2010-01-0883 (2010).

    Book  Google Scholar 

  9. Å. Johansson, U. Wallin, M. Karlsson, A. Isaksson and P. Bush, Investigation on uniformity indices used for diesel exhaust aftertreatment systems, SAE 2008-01-0613 (2008).

    Book  Google Scholar 

  10. G. Zheng, G. Palmer, G. Salanta and A. Kotrba, Mixer development for urea SCR applications, SAE 2009-01-2879 (2009).

    Book  Google Scholar 

  11. X. Zhang and M. Romzek, 3-D numerical study of flow mixing in front of SCR for different injection systems, SAE 2007-01-1578 (2007).

    Book  Google Scholar 

  12. I. Cho, S. Lee, H. Kang and D. S. Baik, A study on the NO x reduction of urea-selective catalytic reduction (SCR) system in a heavyduty diesel engine, SAE 2007-01-3447 (2007).

    Google Scholar 

  13. S.-J. Jeong, S.-J. Lee, W.-S. Kim and C. B. Lee, Simulation on the optimum shape and location of urea injector for urea-SCR system of heavy-duty diesel engine to prevent NH 3 slip, SAE 2005-01-3886 (2005).

    Google Scholar 

  14. van R. Helden, R. Verbeek, F. Willems and R. vander Welle, Optimization of urea SCR deNO x systems for HD diesel engines, SAE 2004-01-0154 (2004).

    Google Scholar 

  15. P. Way, K. Viswanathan, P. Preethi, A. Gilb, N. Zambon and J. Blaisdell, SCR performance optimization through advancements in after-treatment packaging, SAE 2009-01-0633 (2009).

    Book  Google Scholar 

  16. Y. Yi, Development of a 3D numerical model for predicting spray, urea decomposition and mixing in SCR systems, SAE 2007-01-3985 (2007).

    Book  Google Scholar 

  17. M. Chen and S. Williams, Modelling and optimization of SCRexhaust aftertreatment systems, SAE 2005-01-0969 (2005).

    Book  Google Scholar 

  18. X. Zhang, T. Gomulka and M. Romzek, Numerical optimization of flow uniformity inside an F-oval substrate, SAE 2007-01-1088 (2007).

    Book  Google Scholar 

  19. M. Karlsson, U. Wallin, S. Fredholm, J. Jansson, G.-O. Wahlström, C. M. Schär, C. H. Onder and L. Guzzella, A Combined 3D/lumped modeling approach to ammonia SCR after-treatment systems: Application to mixer designs, SAE 2006-01-0469 (2006).

    Book  Google Scholar 

  20. S. F. Benjamin and C. A. Roberts, The porous medium approach applied to CFD modelling of SCR in an automotive exhaust with injection of urea droplets, in IMechE Conference Internal Combustion Engines: Performance, Fuel Economy and Emissions, London (2007).

    Google Scholar 

  21. N. Tamaldin, C. A. Roberts and S. F. Benjamin, Experimental study of SCR in a light-duty diesel exhaust to provide data for validation of a CFD model using the porous medium approach, SAE 2010-01-1177 (2010).

    Book  Google Scholar 

  22. H. J. Chae, S. T. Choo, H. Choi, I.-S. Nam, H. S. Yang and S. L. Song, Ind. Eng. Chem. Res., 39, 1159 (2000).

    Article  CAS  Google Scholar 

  23. A. Frobert, Y. Creff, S. Raux, C. Charial, A. Audouin and L. Gagnepain, SCR for passenger car: Ammonia-storage issue on a Fe-ZSM5 catalyst, SAE 2009-01-1929 (2009).

    Book  Google Scholar 

  24. STAR-CD, STAR-CD Users Guide and Methodology, version 4.12, Computational Dynamics Ltd. (2010).

    Google Scholar 

  25. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski and C.G. Speziale, Phys. Fluids A: Fluid Dynamics, 4, 1510 (1992).

    Article  CAS  Google Scholar 

  26. W. M. Kays and W. Morrow, Compact heat exchangers, McGraw-Hill Book Company (1964).

    Google Scholar 

  27. S.-J. Jeong and W.-S. Kim, Chem. Eng. Process., 42, 879 (2003).

    Article  CAS  Google Scholar 

  28. J. Breuer, R. Brück, R. Diewald and P. Hirth, Temperature examinations on a metal catalyst system, SAE 971028 (1997).

    Book  Google Scholar 

  29. K. Narayanaswamy and Y. He, Modeling of copper-zeolite and ironzeolite selective catalytic reduction (SCR) catalysts at steady state and transient conditions, SAE 2008-01-0615 (2008).

    Book  Google Scholar 

  30. K.W. Hughes, D. Gian and J. Calleja, Relative benefits of various cell density ceramic substrates in different regions of the FTP cycle, SAE 2006-01-1065 (2006).

    Book  Google Scholar 

  31. S. C. Lauderdale, S. T. Nickerson, J. D. Pesansky and C.M. Sorensen, Impact of ceramic substrate web thickness on emission light-off, pressure drop, and strength, SAE 2008-01-0808 (2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiyagarajan Paramadayalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramadayalan, T., Pant, A. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet. Korean J. Chem. Eng. 30, 2170–2177 (2013). https://doi.org/10.1007/s11814-013-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0155-z

Key words

Navigation