Skip to main content
Log in

Mixing of initially stratified miscible fluids in an eccentric stirred tank: Detached eddy simulation and volume of fluid study

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mixing of two stratified miscible fluids in an eccentric stirred tank agitated by a four pitched-blade turbine was studied by using the detached eddy simulation (DES) model and volume of fluid (VOF) method. The fluids were operated in the transitional and mildly turbulent flow regimes. Interfaces between the two miscible fluids during the mixing processes were captured and mixing times were computed. Effects of the Richardson number and eccentricity on the mixing times were quantificationally analyzed. Results show that the spatial and temporal variations of volume fractions of the fluids can be well captured by the method presented in this study. Mixing time increases with the increase of Richardson number. Effect of eccentricity on mixing time depends on Richardson number and the eccentric agitation scheme is not advisable to use to blend the low-viscosity miscible fluids starting from a stratified state, especially for lower Richardson values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shinnar, J. Fluid Mech., 10, 259 (1961).

    Article  Google Scholar 

  2. N. Harnby, M. F. Edwards and A.W. Nienow, Mixing in the process industries, Butterworth-Heinemann, Oxford, 2nd Ed. (1997).

    Google Scholar 

  3. B. J. Briscoe, C. J. Lawrence and W.G. P. Mietus, Adv. Colloid Interface Sci., 81, 1 (1999).

    Article  CAS  Google Scholar 

  4. H. Yapici and G. Basturk, Comput. Chem. Eng., 28, 2233 (2004).

    Article  CAS  Google Scholar 

  5. T. Lemenand, P. Dupont, D. Della Valle and H. Peerhossaini, J. Fluids Eng., 127, 1132 (2005).

    Article  CAS  Google Scholar 

  6. T. Lemenand, C. Durandal, D. Della Valle and H. Peerhossaini, Int. J. Therm. Sci., 49, 1886 (2010).

    Article  CAS  Google Scholar 

  7. J. J. Derksen and H. E. A. Van Den Akker, Chem. Eng. Res. Des., 85, 697 (2007).

    Article  CAS  Google Scholar 

  8. R. K. Grenvilie and A.W. Nienow, In: Handbook of Industrial Mixing: Science and Practice, E. L. Paul, V. A. Atiemo-Obeng and S.M. Kresta Eds., John Wiley & Sons Inc., Hoboken, NJ (2004).

  9. J.M. Smith and A.W. Schoenmakers, Chem. Eng. Res. Des., 66, 16 (1988).

    CAS  Google Scholar 

  10. I. Bouwmans and H. E. A. Van den Akker, IChemE Symp. Ser., 121, 1 (1990).

    CAS  Google Scholar 

  11. I. Bouwmans, A. Bakker and H. E. A. van den Akker, Chem. Eng. Res. Des., 75, 777 (1997).

    Article  CAS  Google Scholar 

  12. P. R. Gogate and A. B. Pandit, Can. J. Chem. Eng., 77, 988 (1999).

    Article  CAS  Google Scholar 

  13. R. Mann, M. Wang, A. E. Forrest, P. J. Holden, F. J. Dickin, T. Dyakowski and R. B. Edwards, Chem. Eng. Commun., 175, 39 (1999).

    Article  CAS  Google Scholar 

  14. S. Kim, A. N. Nkaya and T. Dyakowski, Int. Commun. Heat Mass Transfer, 33, 1088 (2006).

    Article  CAS  Google Scholar 

  15. G. Madras and B. J. McCoy, J. Fluids Eng., 127, 564 (2005).

    Article  Google Scholar 

  16. Y. Jang and S. M. de Bruyn Kops, Comput. Fluids, 36, 238 (2007).

    Article  CAS  Google Scholar 

  17. J. G. van de Vusse, Chem. Eng. Sci., 4, 178 (1955).

    Article  Google Scholar 

  18. C. D. Rielly and A. B. Pandit, Proceedings of 6 th European conference on mixing, Pavia, 69 (1988).

    Google Scholar 

  19. J. J. Derksen, Comput. Fluids, 50, 35 (2011).

    Article  Google Scholar 

  20. J. J. Derksen, Ind. Eng. Chem. Res., 51, 6948 (2012).

    Article  CAS  Google Scholar 

  21. H. J. S. Fernando, Annu. Rev. Fluid Mech., 23, 455 (1991).

    Article  Google Scholar 

  22. J. M. Holford and P. F. Linden, Dyn. Atmos. Oceans, 30, 173 (1999).

    Article  Google Scholar 

  23. G. N. Ivey, K.B. Winters and J. R. Koseff, Annu. Rev. Fluid Mech., 40, 169 (2008).

    Article  Google Scholar 

  24. P. Müller and C. Garrett, J. Oceanogr., 15, 12 (2002).

    Article  Google Scholar 

  25. S. Remmler and S. Hickel, Int. J. Heat Fluid Flow, 35, 13 (2012).

    Article  Google Scholar 

  26. F. L. Yang, S. J. Zhou and G. C. Wang, Comput. Fluids, 64, 74 (2012).

    Article  Google Scholar 

  27. A. Serra, M. Campolo and A. Soldati, Chem. Eng. Sci., 56, 2715 (2001).

    Article  CAS  Google Scholar 

  28. J. N. Haque, T. Mahmud and K. J. Roberts, Ind. Eng. Chem. Res., 45, 2881 (2006).

    Article  CAS  Google Scholar 

  29. G. M. Cartland Glover and J. J. Fitzpatrick, Chem. Eng. J., 127, 11 (2007).

    Article  Google Scholar 

  30. J.-P. Torré, D. F. Fletcherb, T. Lasuyec and C. Xuereb, Chem. Eng. Sci., 62, 6246 (2007).

    Article  Google Scholar 

  31. T. Mahmud, J. N. Haque, K. J. Roberts, D. Rhodes and D. Wilkinson, Chem. Eng. Sci., 64, 4197 (2009).

    Article  CAS  Google Scholar 

  32. N. Lamarque, B. Zoppé, O. Lebaigue, Y. Dolias, M. Bertrand and F. Ducros, Chem. Eng. Sci., 65, 4307 (2010).

    Article  CAS  Google Scholar 

  33. M. Jahoda, M. Moštěk, I. Fořt and P. Hasal, Can. J. Chem. Eng., 89, 717 (2011).

    Article  CAS  Google Scholar 

  34. J. Gimbun, C. D. Rielly, Z. K. Nagy and J. J. Derksen, AIChE J., 58, 3224 (2012).

    Article  CAS  Google Scholar 

  35. F. L. Yang, S. J. Zhou, C. X. Zhang, G. M. Evans and G. C. Wang, Chem. Eng. Commun., 200, 1347 (2013).

    Article  CAS  Google Scholar 

  36. M. Strelets, AIAA-2001-0879.

  37. X. X. Li and Y.X. Ren, J. Tsinghua Univ. (Sci. & Technol.), 44, 1126 (2004).

    Google Scholar 

  38. P.R. Spalart, W. H. Jou, M. Strelets and S.R. Allmaras, In: Advances in DNS/LES C. Liu and Z. Liu Eds., Greyden Press, Columbus, OH (1997).

  39. P. R. Spalart, NASA/CR-2001-211032.

  40. P. R. Spalart, Annu. Rev. Fluid. Mech., 41, 181 (2009).

    Article  Google Scholar 

  41. R. Zadghaffari, J. S. Moghaddas and J. Revstedt, Comput. Fluids, 39, 1183 (2010).

    Article  Google Scholar 

  42. J. Revstedt, L. Fuchs and C. Trägårdh, Chem. Eng. Sci., 53, 4041 (1998).

    Article  CAS  Google Scholar 

  43. G. Ascanio, M. Brito-Bazán, E. Brito-De La Fuente, J. Pierre, P. J. Carreau and P. A. Tanguy, Can. J. Chem. Eng., 80, 558 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ling Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F.L., Zhou, S.J., Zhang, C.X. et al. Mixing of initially stratified miscible fluids in an eccentric stirred tank: Detached eddy simulation and volume of fluid study. Korean J. Chem. Eng. 30, 1843–1854 (2013). https://doi.org/10.1007/s11814-013-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0154-0

Key words

Navigation